Xác định các peptide liên quan đến hoạt động kháng khuẩn của các sản phẩm thủy phân từ gan tụy cua tuyết bằng phương pháp phân đoạn được định hướng sinh học kết hợp với phổ khối

Probiotics and Antimicrobial Proteins - Tập 11 - Trang 1023-1033 - 2018
Emna El Menif1,2, Clément Offret1,2, Steve Labrie1, Lucie Beaulieu1,2
1Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Département des sciences des aliments, Université Laval, Québec, Canada
2Collectif de Recherche Appliquée aux Bioprocédés et à la chimie de l’Environnement CRABE, Université du Québec à Rimouski, Rimouski, Canada

Tóm tắt

Sản phẩm phụ từ cua tuyết (Chionoecetes opilio) là nguồn giàu các sinh mô, chẳng hạn như lipit, protein và chitin, nhưng chưa được nghiên cứu nhiều. Nghiên cứu này nhằm xác định các peptide kháng khuẩn nhằm nâng cao giá trị của các sản phẩm phụ từ C. opilio. Sau khi thủy phân các bộ phận khác nhau bằng Protamex® và nồng độ bằng phương pháp chiết xuất pha rắn, các phần thu được đã được thử nghiệm hoạt động kháng khuẩn chống lại Escherichia coli, Listeria innocua và Vibrio parahaemolyticus. Gan tụy là mô duy nhất thể hiện hoạt động kháng khuẩn được phát hiện bằng quy trình này. Bốn phân đoạn thu được với và không có thủy phân enzym của gan tụy sau khi phân đoạn SPE C18 và elution với 50% và 80% acetonitrile đã thể hiện hoạt động ức chế vi khuẩn chống lại L. innocua HPB13, từ nồng độ 0.30 đến 43.05 mg/mL các peptide/protein. Mười một peptide chia sẻ ít nhất 80% đồng hình axit amin với bốn peptide kháng khuẩn đã được xác định thông qua quang phổ khối. Hai peptide có sự đồng hình với các peptide kháng khuẩn như crustin và GAPDH của cá ngừ vằn thuộc về các sinh vật biển Penaeus monodon và Thunnus albacares, tương ứng. Các đồng hình chuỗi peptide khác cũng đã được xác định: Odorranain-C7 từ ếch Odorrana grahami và một peptide kháng khuẩn dự đoán ở bọ rùa châu Á Harmonia axyridis. Các peptide hoạt tính này có thể đại diện cho một nhóm peptide sinh học mới xứng đáng được nghiên cứu thêm như các chất bảo quản thực phẩm.

Từ khóa

#Cua tuyết #peptide kháng khuẩn #gan tụy #thủy phân #nghiên cứu sinh học

Tài liệu tham khảo

MAPAQ (2015) Monographie de l’industrie du crabe des neiges DFO (2015) Snow crab. http://www.dfo-mpo.gc.ca/fm-gp/sustainable-durable/fisheries-peches/snow-crab-eng.htm. [Accessed: 01-Apr-2017] Carbonneau ME (2013) Coproduits de crabe des neiges. Merinov. https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwievZWn08vZAhUL0IMKHSi0CNoQFggpMAA&url=https%253A%252F%252Fwww.merinov.ca%252Ffr%252Fpubli%253Ftask%253Dcallelement%2526format%253Draw%2526item_id%253D739%2526element%253D5683814e-953d-40a2-8d2a-15d5ece9d966%25. [Accessed: 01-Feb-2018] Bouazza A (2009) Purification, caractérisation et etude des proprieties immunostumulantes de l’hémocyanine de crabe des neiges, Chinoecetes Opilio. Dissertation, Laval University Lafarga T, Hayes M (2017) Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current challenges. Food Rev Int 33:217–246. https://doi.org/10.1080/87559129.2016.1175013 Beaulieu L, Thibodeau J, Bryl P, Carbonneau ME (2009) Characterization of enzymatic hydrolyzed snow crab (Chionoecetes opilio) by-product fractions: a source of high-valued biomolecules. Bioresour Technol 100:3332–3342. https://doi.org/10.1016/j.biortech.2009.01.073 Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–233. https://doi.org/10.3390/md9020196 Sanina NM, Velansky PV, Kostetsky EY (2016) The thermotropic behavior and fatty radical composition of major phospholipids of the tanner crab Chionoecetes bairdi Rathbun, 1924. Russ J Mar Biol 42:81–86. https://doi.org/10.1134/S1063074016010156 Matos J, Cardoso C, Bandarra NM, Afonso C (2017) Microalgae as a healthy ingredient for functional food: a review. Food Funct 8:2672–2685. https://doi.org/10.1039/C7FO00409E Ng TB, Cheung RCF, Wong JH, Bekhit AA, Bekhit AED (2015) Antibacterial products of marine organisms. Appl Microbiol Biotechnol 99:4145–4173. https://doi.org/10.1007/s00253-015-6553-x Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48:3645–3654. https://doi.org/10.1128/AAC.48.10.3645-3654.2004 Otero-González AJ, Magalhães BS, Garcia-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, Franco OL (2010) Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24:1320–1334. https://doi.org/10.1096/fj.09-143388 Lahl WJ (1994) Enzymatic production of protein by hydrolysates for food use. Food Sci 48:68–71 Tam JP, Lu YA, Yang JL (2000) Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-strand cystine knot framework. Biochem Biophys Res Commun 267:783–790. https://doi.org/10.1006/bbrc.1999.2035 Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1989) Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem 106:663–668. https://doi.org/10.1093/oxfordjournals.jbchem.a122913 Antony SP, Singh ISB, Sudheer NS, Vrinda S, Priyaja P, Philip R (2011) Molecular characterization of a crustin-like antimicrobial peptide in the giant tiger shrimp, Penaeus monodon, and its expression profile in response to various immunostimulants and challenge with WSSV. Immunobiology 216:184–194. https://doi.org/10.1016/j.imbio.2010.05.030 Sruthy KS, Chaithanya ER, Sathyan N, Nair A, Antony SP, Bright Singh IS, Philip R (2015) Molecular characterization and phylogenetic analysis of novel isoform of anti-lipopolysaccharide factor from the Mantis shrimp, Miyakea nepa. Probiotics Antimicrob Proteins 7:275–283. https://doi.org/10.1007/s12602-015-9198-2 Lee SY, Lee BL, Soderhall K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278:7927–7933. https://doi.org/10.1074/jbc.M209239200 Munoz M, Vandenbulcke F, Garnier J, Gueguen Y, Bulet P, Saulnier D, Bachère E (2004) Involvement of penaeidins in defense reactions of the shrimp Litopenaeus stylirostris to a pathogenic vibrio. Cell Mol Life Sci 61:961–972. https://doi.org/10.1007/s00018-003-3441-9 Stensvag K, Haug T, Sperstad SV et al (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285. https://doi.org/10.1016/j.dci.2007.06.002 Sperstad SV, Haug T, Vasskog T, Stensvag K (2009) Hyastatin, a glycine-rich multi-domain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. Mol Immunol 46:2604–2612. https://doi.org/10.1016/j.molimm.2009.05.002 Relf JM, Chisholm JRS, Kemp GD, Smith VJ (1999) Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264:350–357. https://doi.org/10.1046/j.1432-1327.1999.00607.x Noga EJ, Stone KL, Wood A, Gordon WL, Robinette D (2011) Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab. Dev Comp Immunol 35:409–415. https://doi.org/10.1016/j.dci.2010.11.015 Beaulieu L, Thibodeau J, Desbiens M, Saint-Louis R, Zatylny-Gaudin C, Thibault S (2010) Evidence of antibacterial activities in peptide fractions originating from snow crab (Chionoecetes opilio) by-products. Probiotics Antimicrob Proteins 2:197–209. https://doi.org/10.1007/s12602-010-9043-6 Gaillard M, Bernatchez L, Tremblay R, Audet C (2015) Regional variation in energy storage strategies in American glass eels from Eastern Canada. Comp Biochem Physiol A Mol Integr Physiol 188:87–95. https://doi.org/10.1016/j.cbpa.2015.06.019 Ebeling ME (1968) The Dumas method for nitrogen in feeds. J Assoc Off Anal Chem 51:766–770 Spinelli J, Lehman L, Wieg D (1974) Composition, processing, and utilization of red crab (Pleuroncodes planipes) as an aquacultural feed ingredient. J Fish Res Board Can 31:1025–1029. https://doi.org/10.1139/f74-115 Hamed I, Ozogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://doi.org/10.1016/j.tifs.2015.11.007 AOAC, Official Methods of Analysis (1990) Arlington, Virginia, USA Robert M, Zatylny-Gaudin C, Fournier V, Corre E, Le Corguillé G, Bernay B, Henry J (2014) Transcriptomic and peptidomic analysis of protein hydrolysates from the white shrimp (L. vannamei). J Biotechnol 186:30–37. https://doi.org/10.1016/j.jbiotec.2014.06.020 Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227. https://doi.org/10.3168/jds.S0022-0302(83)81926-2 Doyen A, Saucier L, Beaulieu L, Pouliot Y, Bazinet L (2012) Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem 132:1177–1184. https://doi.org/10.1016/j.foodchem.2011.11.059 Sharpe AN, Kilsby DC (1971) A rapid, inexpensive bacterial count technique using agar droplets. J Appl Bacteriol 34:435–440. https://doi.org/10.1111/j.1365-2672.1971.tb02303.x Beaulieu L, Bondu S, Doiron K, Rioux LE, Turgeon SL (2015) Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods 17:685–697. https://doi.org/10.1016/j.jff.2015.06.026 Adeyeye EI (2002) Determination of the chemical composition of the nutritionally valuable parts of male and female common west African fresh water crab Sudananautes africanus africanus. Int J Food Sci Nutr 53:189–196. https://doi.org/10.1080/09637480220132805 Skonberg DI, Perkins BL (2002) Nutrient composition of green crab (Carcinus maenus) leg meat and claw meat. Food Chem 77:401–404. https://doi.org/10.1016/S0308-8146(01)00364-8 Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532. https://doi.org/10.1021/jf00008a032 Carbonneau ME (2013) Coproduits du crabe commun, carapaces. Merinov. http://www.merinov.ca/fr/app-publication/item/fiche-biomasse-marine-sous-valorisee-crabe-commun-carapace. [Accessed: 01-Feb-2018] Crespo MOP, Martínez MV, Hernández JL, Lage Yusty MA (2006) High-performance liquid chromatographic determination of chitin in the snow crab, Chionoecetes opilio. J Chromatogr 1116:189–192. https://doi.org/10.1016/j.chroma.2006.03.068 DFO (2016) Snow crab. http://www.dfo-mpo.gc.ca/species-especes/profiles-profils/snow-crab-crabe-neiges-atl-eng.html. [Accessed: 24-May-2017] Joffe I, Hepburn HR, Nelson KJ, Green N (1975) Mechanical properties of a crustacean exoskeleton. Comp Biochem Physiol Physiol 50:545–549. https://doi.org/10.1016/0300-9629(75)90312-6 Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical properties of a crab shell. Comp Biochem Physiol 50:551–554 Taylor HH (1990) Pressure-flow characteristics of crab gills: implications for regulation of hemolymph pressure. Physiol Biochem Zool 63:72–89. https://doi.org/10.1086/physzool.63.1.30158154 Wheeler K, Shields JD, Taylor DM (2007) Pathology of hematodinium infections in snow crabs (Chionoecetes opilio) from Newfoundland, Canada. J Invertebr Pathol 95:93–100. https://doi.org/10.1016/j.jip.2007.01.002 You L, Zhao M, Cui C, Zhao H, Yang B (2009) Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov Food Sci Emerg Technol 10:235–240. https://doi.org/10.1016/j.ifset.2008.08.007 Mori K, Stewart JE (1978) The hemolymph bactericidin of American lobster (Homarus americanus): adsorption and activation. J Fish Res Board Canada 35:1504–1507. https://doi.org/10.1139/f78-238 Hajirasouli M, Pizooki J (2014) Antimicrobial potential of hemolymph and hepatopancreas of Portunus segnis crabs. Int J Pharm Pharm Sci 6:6–8 Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, Demura M, Kawabata SI, Kawano K (2014) Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. BBA—Proteins Proteomics 1844:527–534. https://doi.org/10.1016/j.bbapap.2013.12.017 Destoumieux D, Bulet P, Loew D, van Dorsselaer A, Rodriguez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406. https://doi.org/10.1074/jbc.272.45.28398 Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532–539. https://doi.org/10.1111/j.1432-1033.1996.0532h.x Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870. https://doi.org/10.1086/381972 Vilcinskas A, Mukherjee K, Vogel H (2013) Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proc Biol Sci 280:2012–2113. https://doi.org/10.1098/rspb.2012.2113. Smith VJ, Fernandes JMO, Kemp GD, Hauton C (2008) Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev Comp Immunol 32:758–772. https://doi.org/10.1016/j.dci.2007.12.002 Jiravanichpaisal P, Lee SY, Kim YA, Andrén T, Soderhall I (2007) Antibacterial peptides in hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus leniusculus: characterization and expression pattern. Dev Comp Immunol 31:441–455. https://doi.org/10.1016/j.dci.2006.08.002 Oberdorster E, Rittschof D, Mcclellan-Green P (1998) Induction of cytochrome P450 3A and heat shock protein by tributyltin in blue crab, Callinectes sapidus. Aquat Toxicol 41:83–100. https://doi.org/10.1016/S0166-445X(97)00067-2 Li J, Xueqing X, Chunhua X et al (2007) Anti-infection peptidomics of amphibian skin. Mol Cell Proteomics 6:882–894. https://doi.org/10.1074/mcp.M600334-MCP200 Seo JK, Lee MJ, Go HJ, Park TH, Park NG (2012) Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol 33:743–752. https://doi.org/10.1016/j.fsi.2012.06.023 Dhar AK, Dettori A, Roux MM, Klimpel AR, Reid B (2003) Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with White spot syndrome virus by cDNA microarrays. Arch Virol 148:2381–2396. https://doi.org/10.1007/s00705-003-0172-z Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46:1688–1695. https://doi.org/10.1016/j.molimm.2009.02.020 Lüders T, Birkemo GA, Fimland G, Nissen-Meyer J, Nes IF (2003) Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl Environ Microbiol 69:1797–1799. https://doi.org/10.1128/AEM.69.3.1797-1799.2003