Xác định và xác thực các gen tham chiếu cho quá trình chuẩn hóa RT-PCR định lượng trong lúa mì

Anna Rita Paolacci1, O. A. Tanzarella1, E. Porceddu1, M. Ciaffi1
1Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy

Tóm tắt

Tóm tắt Đặt vấn đề Các gen tham chiếu thường được sử dụng trong phân tích biểu hiện gen thường đã được chọn vì vai trò được biết đến hoặc nghi ngờ của chúng trong chức năng housekeeping, tuy nhiên sự biến động quan sát thấy ở hầu hết chúng cản trở việc sử dụng hiệu quả của chúng. Thiếu hụt các gen tham chiếu đã được xác thực chỉ rõ tầm quan trọng của một nghiên cứu hệ thống nhằm xác định chúng. Để chọn các ứng viên gen tham chiếu, chúng tôi đã phát triển một phương pháp in silico đơn giản dựa trên dữ liệu công khai có sẵn trong các cơ sở dữ liệu lúa mì Unigene và TIGR. Kết quả Sự ổn định biểu hiện của 32 gen đã được đánh giá bằng qRT-PCR sử dụng một bộ cDNA từ 24 mẫu thực vật khác nhau, bao gồm các mô, giai đoạn phát triển khác nhau và các điều kiện stress nhiệt. Các trình tự được chọn bao gồm 12 gen HKG nổi tiếng đại diện cho các lớp chức năng khác nhau và 20 gen mới có liên quan đến vấn đề chuẩn hóa. Sự ổn định biểu hiện của 32 gen ứng viên đã được thử nghiệm thông qua các chương trình máy tính geNorm và NormFinder sử dụng năm bộ dữ liệu khác nhau. Một số sự khác biệt đã được phát hiện trong việc xếp hạng các gen tham chiếu ứng viên, nhưng có sự đồng thuận đáng kể giữa các nhóm gen với biểu hiện ổn định nhất và ít ổn định nhất. Ba gen tham chiếu mới được xác định dường như hiệu quả hơn so với các gen housekeeping nổi tiếng và được sử dụng phổ biến để chuẩn hóa biểu hiện gen trong lúa mì. Cuối cùng, nghiên cứu biểu hiện của một gen mã hóa protein PDI-like cho thấy rằng việc đánh giá chính xác của nó phụ thuộc vào việc áp dụng các gen chuẩn hóa phù hợp và có thể bị ảnh hưởng tiêu cực bởi việc sử dụng các gen HKG truyền thống với biểu hiện không ổn định, chẳng hạn như actin và α-tubulin. Kết luận Nghiên cứu hiện tại đại diện cho lần sàng lọc rộng đầu tiên nhằm xác định các gen tham chiếu và các cặp mồi tương ứng được thiết kế đặc biệt cho các nghiên cứu biểu hiện gen trong lúa mì, đặc biệt là cho các phân tích qRT-PCR. Nhiều gen tham chiếu mới được xác định vượt trội hơn các gen HKG truyền thống về mặt ổn định biểu hiện trong tất cả các điều kiện đã thử nghiệm. Các gen tham chiếu mới sẽ cho phép chuẩn hóa và định lượng chính xác hơn về biểu hiện gen trong lúa mì và sẽ hữu ích cho việc thiết kế các cặp mồi nhắm vào các gen cùng nguồn gốc ở các loài thực vật khác.

Từ khóa


Tài liệu tham khảo

Czechowski T, Bari RP, Stitt M, Scheible W-R, Udvardi MK: Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 2004, 38: 366-379. 10.1111/j.1365-313X.2004.02051.x

Gachon C, Mingam A, Charrier B: Real-time PCR: what relevance to plant studies?. J Exp Bot. 2004, 55: 1445-1454. 10.1093/jxb/erh181

Caldana C, Scheible W-R, Mueller-Roeber , Ruzicic S: A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods. 2007, 3: 7- 10.1186/1746-4811-3-7

Bustin SA: Quantification of mRNA using real-time reverse transcription PCR RT-PCR: trends and problems. J Mol Endocrinol. 2002, 29: 23-29. 10.1677/jme.0.0290023

Ginzinger DG: Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002, 30 (6): 503-512. 10.1016/S0301-472X(02)00806-8

Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6 (4): 279-284. 10.1038/sj.gene.6364190

Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Henne G, Grisar T, Igout A, Heinen E: Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999, 75 (2-3): 191-195. 10.1016/S0168-1656(99)00163-7

Suzuki T, Higgins PJ, Crawford DR: Control selection for RNA quantitation. Biotechniques. 2000, 29: 332-337.

Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR: Beta-actin an unsuitable internal control for RT-PCR. Mol Cell Probes. 2001, 15 (5): 307-311. 10.1006/mcpr.2001.0376

Lee PD, Sladek R, Greenwood CMT, Hudson TJ: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2001, 12: 292-297. 10.1101/gr.217802.

Ohl F, Jung M, Xu C, Stephan C, Rabien A, Burkhardt M, Nitsche A, Kristiansen G, Loening SA, Radonic A, Jung K: Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization?. J Mol Med. 2005, 83 (12): 1014-1024. 10.1007/s00109-005-0703-z

Czechowski T, Stitt M, Altman T, Udvardi MK, Scheible W-R: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139 (1): 5-17. 10.1104/pp.105.063743

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): RESEARCH0034- 10.1186/gb-2002-3-7-research0034

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004, 26 (6): 509-515. 10.1023/B:BILE.0000019559.84305.47

Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64 (15): 5245-5250. 10.1158/0008-5472.CAN-04-0496

Brunner AM, Yakovlev IA, Strauss SH: Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004, 4: 14- 10.1186/1471-2229-4-14

Goncalves S, Cairney J, Maroco J, Oliveira MM, Miguel C: Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta. 2005, 222: 556-563. 10.1007/s00425-005-1562-0

Nicot N, Hausman JF, Hoffmann L, Evers D: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005, 56: 2907-2914. 10.1093/jxb/eri285

Jain M, Nijhawan A, Tyagi AK, Khurana JP: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Com. 2006, 345: 646-651. 10.1016/j.bbrc.2006.04.140

Reid KE, Olsson N, Schlosser J, Peng F, Lund ST: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6: 27- 10.1186/1471-2229-6-27

Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V: A combined strategy of "in silico" transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol. 2007, 63: 679-688. 10.1007/s11103-006-9116-9

Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O: Towards a systematic validation of references in Real-Time RT-PCR. Plant Cell. 2008, 20: 1734-1735. 10.1105/tpc.108.059774

Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefevre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology J. 2008, 6: 609-618. 10.1111/j.1467-7652.2008.00346.x.

Feuillet C, Keller B: Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot. 2002, 89: 3-10. 10.1093/aob/mcf008

La Rota M, Sorrells ME: Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics. 2004, 4: 34-46. 10.1007/s10142-003-0098-2

Singh NK, Dalal V, Batra K, Singh BK, Chitra G, et al: Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics. 2007, 7: 17-35. 10.1007/s10142-006-0033-4

Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA: Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics. 2006, 7: 267- 10.1186/1471-2164-7-267

Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welhan S, et al: Transcriptome analysis of grain development in hexaploid wheat. BMC genomics. 2008, 9: 121- 10.1186/1471-2164-9-121

Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R: Molecular dissection of variation in carbohydrate metabolism related to water-soluble carboydrate accumulation in stems of wheat. Plant Physiol. 2008, 146: 441-454. 10.1104/pp.107.113076

Clarke B, Rahman S: A microarray analysis of wheat grain hardness. Theor Appl Genet. 2005, 110: 1259-1267. 10.1007/s00122-005-1962-3

Kawaura K, Mochida K, Yamazaki Y, Ogihara Y: Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics. 2006, 6: 132-142. 10.1007/s10142-005-0010-3

Gregersen PL, Holm PB: Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J. 2007, 5: 192-206. 10.1111/j.1467-7652.2006.00232.x

Bustin SA, Benes V, Nolan T, Pfaffl MW: Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol. 2005, 34: 597-601. 10.1677/jme.1.01755

Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A: Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Com. 2004, 313: 856-862. 10.1016/j.bbrc.2003.11.177

McDowell JM, Huang S, McKinney EC, An Y-Q, Meagher RB: Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996, 142: 587-602.

Farajalla MR, Gulick PJ: The α-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation. Genome. 50: 502-510.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2007, 36: 13-21. 10.1093/nar/gkm1000.

Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi V, Pertea G, Sultana R, White J: The TIGR Gene Indices: analysis of gene transcript sequences in higly sampled eukaryotic species. Nucleic Acids Res. 29: 159-164.

Ciaffi M, Paolacci AR, Dominici L, Tanzarella OA, Porceddu E: Molecular characterization of gene sequences coding for protein disulfide isomerase (PDI) in durum wheat (Triticum turgidum ssp durum). Gene. 2001, 265: 147-156. 10.1016/S0378-1119(01)00348-1

Ciaffi M, Paolacci AR, D'Aloisio E, Tanzarella OA, Porceddu E: Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences. Gene. 2006, 366: 209-218. 10.1016/j.gene.2005.07.032

Tsvetanov S, Ohno R, Tsuda K, Takumi S, Mori N, Atanassov A, Nakamura C: A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar "Mironovska 808". Genes Genet Syst. 2000, 75: 49-57. 10.1266/ggs.75.49

Ndong C, Danyluk J, Wilson KE, Pocok T, Huner NPA, Sarhan F: Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol. 2002, 129: 1368-1381. 10.1104/pp.001925

Campbell JL, Klueva NY, Zheng HG, Nieto-Sotelo J, Ho THD, Nguyen HT: Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum L. Moench) inducible by heat, dehydration, and ABA. Biochimica et Biophysica Acta. 2001, 1517: 270-277.

Gulli M, Corradi M, Rampino P, Marmiroli N, Perrotta C: Four members of the HSP101 gene family are differentially regulated in Triticum durum Desf. FEBS Letters. 2007, 581: 4841-4849. 10.1016/j.febslet.2007.09.010

Katiyar-Agarwal S, Agarwal M, Gallie DR, Grover A: Search for cellular functions of plant Hsp100/Clp family proteins. Crit Rev Plant Sci. 2001, 20: 277-295. 10.1016/S0735-2689(01)80043-5.

Wells DR, Tanguay RL, Le H, Gallie DR: HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev. 1998, 20: 3236-3251. 10.1101/gad.12.20.3236.

geNorm manual. http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf

Hsiao L-L, Dangond F, Yosida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, et al: A compendium of gene expression in normal human tissues. Physiol Genomics. 2001, 7: 97-104.

Eisenberg E, Levanon EY: Human housekeeping genes are compact. Trends in Genetics. 2003, 7: 362-365. 10.1016/S0168-9525(03)00140-9.

Zhu J, He F, Song S, Wang J, Yu J: How many human genes can be defined as housekeeping with current expression data?. BMC genomics. 2008, 9: 172- 10.1186/1471-2164-9-172

Wong ML, Medrano JF: Real-time PCR for mRNA quantification. Biotechniques. 2005, 39: 75-85. 10.2144/05391RV01

Charrier B, Champion A, Henry Y, Kreis M: Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol. 2002, 130: 577-590. 10.1104/pp.009175

Jian B, Liu B, Bi Y, Hou W, Wu C, Han T: Validation of internal control for gene expression study in soybean by quantitative real time PCR. BMC Molecular Biology. 2008, 9: 59- 10.1186/1471-2199-9-59

Lyng MB, Laenkholm A-V, Pallisgaard N, Ditzel HJ: Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer. 2008, 8: 20- 10.1186/1471-2407-8-20

Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS: Statistical modelling for selecting housekeeper genes. Genome Biol. 2004, 5: R59- 10.1186/gb-2004-5-8-r59

Haller F, Kulle B, Schwager S, Gunawan B, von HA, Sultmann H, Fuzesi L: Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Anal Biochem. 2004, 335: 1-9. 10.1016/j.ab.2004.08.024

Maccoux LJ, Clements DN, Salway F, Day PJR: Identification of new reference genes for the normalization of canine osteoarthritic tissue transcripts from microarray data. BMC Molecular Biology. 2007, 8: 62- 10.1186/1471-2199-8-62

Hibbeler S, Scharsack JP, Becker S: Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Molecular Biology. 2008, 9: 18- 10.1186/1471-2199-9-18

Bonefeld BE, Elfving B, Wegener G: Reference genes for normalization: a study of rat brain tissue. SYNAPSE. 2008, 63: 302-309. 10.1002/syn.20496.

Yu H, Luscombe NM, Qian J, Gerstein M: Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 2003, 19: 422-427. 10.1016/S0168-9525(03)00175-6

Ransbotin V, Reusch TBH: Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnology and Oceanography-Methods. 2006, 4: 367-373.

Schmid H, Cohen CD, Henger A, Irrgang S, Schlondoff D, Kretzler M: Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 2003, 64: 356-360. 10.1046/j.1523-1755.2003.00074.x

Hoerndli FJ, Toigo M, Schild A, Gotz J, Day PJ: Reference genes identified in SH-SY5Y cells using custom-made gene array with validation by quantitative polymerase chain reaction. Anal Biochem. 2004, 335: 30-41. 10.1016/j.ab.2004.08.028