Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định và xác minh chức năng của một tập hợp gene độc đáo được kích thích bởi hạn hán, được biểu hiện ưu tiên trong phản ứng với stress nước dần dần ở đậu phộng
Tóm tắt
Đậu phộng, được xem là cây trồng có khả năng chịu hạn tương đối tốt, đã được lựa chọn để nghiên cứu nhằm đặc trưng hóa các gene được biểu hiện dưới điều kiện thiếu nước dần dần. Gần 700 gene đã được xác định là phong phú trong thư viện cDNA trừ với quá trình thích ứng với stress hạn hán dần dần. Hơn nữa, sự biểu hiện của các gene kích thích hạn hán liên quan đến các thành phần tín hiệu khác nhau và các tập hợp gene tham gia bảo vệ chức năng tế bào đã được mô tả dựa trên các thí nghiệm dot blot. Năm mươi gene (25 gene điều hòa và 25 gene liên quan đến chức năng) được chọn dựa trên các thí nghiệm dot blot đã được thử nghiệm về độ nhạy với stress bằng phương pháp phân tích northern blot và xác nhận bản chất của việc điều hòa khác biệt dưới các điều kiện áp suất đất khác nhau của các điều trị stress hạn hán. ESTs được tạo ra từ thư viện cDNA đã trừ này cung cấp một nguồn phong phú các gene liên quan đến stress bao gồm các thành phần tín hiệu. Thêm vào đó, 50% các chuỗi chưa được đặc trưng cũng rất đáng chú ý. Những hiểu biết thu được từ nghiên cứu này sẽ cung cấp cơ sở cho các nghiên cứu sâu hơn nhằm hiểu câu hỏi về cách cây đậu phộng có khả năng thích nghi với các điều kiện hạn hán khắc nghiệt xảy ra tự nhiên. Hiện tại, việc xác minh chức năng không thể đượccho là đã được thực hiện ở đậu phộng, do đó làm bằng chứng cho khái niệm, bảy gene đồng hình của gene kích thích hạn hán ở đậu phộng đã được làm im lặng trong hệ thống N. benthamiana dị hợp, bằng phương pháp làm im lặng gene do virus gây ra. Những kết quả này chỉ ra tầm quan trọng chức năng của gene HSP70 và các điều hòa chính như Jumonji trong phản ứng với stress hạn hán.
Từ khóa
#đậu phộng #gene #stress nước #xác minh chức năng #HSP70 #JumonjiTài liệu tham khảo
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78
Agata S, van Steensel B, Alessandro B, Stefan O, Matthias RS, Gisela S, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20(5):1659–1668
Agnès DL, Roselyne FI, Dominique CA, Pham-Thi AT, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in Cowpea leaves. Ann Bot 97(1):133–140
Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054
Barrs HD, Weatherly PE (1986) A re-examination of the relative turgidity for estimating water deficits in leaves. Aust J Biol Sci 15:413–428
Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701
Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum: a contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353
Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of ABA-modulated genes from the resurrection plant Craterostigma plantagineum which are induced during desiccation. Planta 181:27–34
Bernacchia G, Furini A (2004) Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant 121:175–181
Boyer JS (1982) Plant productivity and environment. Science 281(4571):443–448
Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17:231–235
Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S, Hagman J, Hansen K, Shi Y, Zhang G (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125:691–702
Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677
Cho YJ, Meade JD, Walden JC, Chen X, Guo Z, Liang P (2001) Multicolor fluorescent differential display. Biotechniques 30:562–572
Collett H, Butowt R, Smith J, Farrant J, Illing N (2003) Photosynthetic genes are differentially transcribed during the dehydration–rehydration cycle in the resurrection plant, Xerophyta humilis. J Exp Bot 54:2593–2595
Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12:339–346
Dahlia G, Thomson JA, Mundree SG (2003) Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscose Baker. J Exp Bot 54(381):191–201
Dastidar KG, Maitra S, Goswami L, Roy D, Das KP, Majumder AL (2006) An Insight into the molecular basis of salt tolerance of l-myo-inositol 1-P synthase (PcINO1) from Poteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279–1296
Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856
Devaiah KM, Bali G, Athmaram TN, Basha MS (2007) Identification of two new genes from drought tolerant peanut up-regulated in response to drought. Plant Growth Regul 52:249–258
Dhundy RB, Vaijaynti VP, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38(6):1123–1135
Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030
Ewing RM, Kahla AB, Poirot O, Lopez F, Audic S, Claverie JM (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950–959
Flower DJ, Ludlow MM (1986) Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Plant Cell Environ 9:33–40
Galau G, Wang HYC, Hughes DW (1993) Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiol 101:695–696
Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99(17):11507–11512
Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA Helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17(1):256–267
Goto F, Yoshihara T, Masuda T, Takaiwa F (2001) Genetic improvement of iron content and stress adaptation in plants using ferritin gene. Biotechnol Genet Eng Rev 18:351–371
Govind G (2006) Profiling transcriptome of Arachis hypogaea L. under drought and monitoring the expression pattern, Ph.D. thesis, University of Agricultural Sciences (B), India
Guo BZ, Xu G, Cao YG, Holbrook CC, Lynch RE (2006) Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223(3):512–520
Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403
Iturriaga G, Gaff DF, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central highlands of Mexica, accumulate trehalose. Aus J Bot 48(2):153–158
Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357
Kivioja T, Arvas M, Saloheimo M, Penttilä M, Ukkonen E (2005) Optimization of cDNA-AFLP experiments using genomic sequence data. Bioinformatics 21(11):2573–2579
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and clod stress. Plant Physiol 130:2129–2141
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141(4):1167–1184
Liang P, Pardee AB (1992) Differential display of eukaryotic mesenger RNA by means of polymerase chain reaction. Science 257:967–971
Lobréaux S, Hardy T, Briat JF (1993) Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J 12(2):651–657
Luo M, Dang P, Guo BZ, He G, Holbrook CC, Bausher MG, Lee RD (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353
Maarouf HE, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham Thi At (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39(6):1257–1265
Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant l-myo-inositol-1-P synthase from Poteresia coarctata (Roxb.) Tateoka, a halophytic wild rice, molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotyope. J Biol Chem 279: 28539–28552
Mowla SB, Thomson J, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa baker. Planta 215:716–726
Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101(16):6309–6314
Mundree SG, Whittaker A, Thomson JA, Farrant JM (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta 211:693–700
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
Nautiyal PC, Rachaputi NR, Joshi YC (2002) Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crop Res 74:67–79
Neale AD, Blomstedt CK, Bronson P, Le TN, Guthridge K, Evans J, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23:265–277
Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress- and abscisic acid-regulated genes in a drought tolerant sunflower genotype. Plant Mol Biol 31:819–829
Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34(11):3220–3230
Pascual-Ahuir A, Posas F, Serrano R, Proft M (2001) Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem 276(40):37373–37378
Phillips JR, Oliver MJ, Bartels D (2002) Molecular genetics of desiccation and tolerant systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 319–341
Proite K, Soraya CM Leal-Bertioli, David JB, Márcio CM, Felipe R da Silva, Natalia FM, Patrícia MG (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7: 7
Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151
Reddy ASN, Poovaiah BW (1990) Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene. Plant Mol Biol 14:127–136
Reddy PCO, Sairanganayakulu G, Thippeswamy M, Sudhakar Reddy P, Reddy MK, Sudhakar Chinta (2008) Identification of stress-induced genes from the drought tolerant semi-arid legume crop horsegram [Macrotyloma uniflorum (Lam.) Verdc.] through analysis of subtracted expressed sequence tags. Plant Sci 175:372–384
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102(2):509–514
Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninic P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72
Seki M, Narusaka M, Kamiya A (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145
Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta 225(3):523–539
Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227
Smith-Espinoza CJ, Richter A, Salamini F, Bartels D (2003) Dissecting the response to dehydration and salt (NaCl) in the resurrection plant Craterostigma Plantagenium. Plant Cell Environ 26:1307–1315
Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seed. Plant J 47(2):310–327
Sreenivasulu N, Sopory SK, Kishor PBK (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388(1–2):1–13
Steiner C, Bauer J, Amrhein N, Bucher M (2003) Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. Biochim Biophys Acta 1625:123–133
Subbarao GV, Chauhan YS, Johansen C (2000) Patterns of osmotic adjustment in pigeon pea: its importance as a mechanism of drought resistance. Eur J Agron 12:239–249
Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202
Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Over expression of Na+/H+ antiporter confers salt tolerance on fresh water Cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99(6):4109–4114
Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112
Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet 107(8):1402–1409
Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252
FAO Statistical Yearbook (2004). http://www.fao.org/statistics/yearbook/vol_1_1/site_en.asp?page=production
Yoshiba Y, Aoki C, Iuchi S, Nanjo T, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2001) Characterization of four extensin genes in Arabidopsis thaliana by differential gene expression under stress and non-stress conditions. DNA Res 8(3):115–122
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273