Identification and functional analysis of the SARS-COV-2 nucleocapsid protein
Tóm tắt
A severe form of pneumonia, named coronavirus disease 2019 (COVID-19) by the World Health Organization is widespread on the whole world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proved to be the main agent of COVID-19. In the present study, we conducted an in depth analysis of the SARS-COV-2 nucleocapsid to identify potential targets that may allow identification of therapeutic targets. The SARS-COV-2 N protein subcellular localization and physicochemical property was analyzed by PSORT II Prediction and ProtParam tool. Then SOPMA tool and swiss-model was applied to analyze the structure of N protein. Next, the biological function was explored by mass spectrometry analysis and flow cytometry. At last, its potential phosphorylation sites were analyzed by NetPhos3.1 Server and PROVEAN PROTEIN. SARS-COV-2 N protein composed of 419 aa, is a 45.6 kDa positively charged unstable hydrophobic protein. It has 91 and 49% similarity to SARS-CoV and MERS-CoV and is predicted to be predominantly a nuclear protein. It mainly contains random coil (55.13%) of which the tertiary structure was further determined with high reliability (95.76%). Cells transfected with SARS-COV-2 N protein usually show a G1/S phase block company with an increased expression of TUBA1C, TUBB6. At last, our analysis of SARS-COV-2 N protein predicted a total number of 12 phosphorylated sites and 9 potential protein kinases which would significantly affect SARS-COV-2 N protein function. In this study, we report the physicochemical properties, subcellular localization, and biological function of SARS-COV-2 N protein. The 12 phosphorylated sites and 9 potential protein kinase sites in SARS-COV-2 N protein may serve as promising targets for drug discovery and development for of a recombinant virus vaccine.
Tài liệu tham khảo
World Health Organization. WHO | World experts and funders set priorities for COVID-19 research: WHO. WHO Technical guidance; 2020.
World Health Organization. Weekly Operational Update on COVID-19, 18 September 2020: WHO. WHO Situation Reports; 2020.
Profile, Read JM, Bridgen JRE, Cummings DAT, et al. Novel coronavirus COVID-19: early estimation of epidemiological parameters and epidemic predictions. medRxiv. 2020.
https://doi.org/10.1101/2020.01.23.20018549
.
citation_journal_title=Environ Health; citation_title=Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study; citation_author=Y Cui, ZF Zhang, J Froines; citation_volume=2; citation_issue=1; citation_publication_date=2003; citation_pages=15; citation_doi=10.1186/1476-069X-2-15; citation_id=CR4
Yan L, Jin-yong Z, Wang N, et al. Therapeutic Drugs Targeting COVID-19 Main Protease by High-Through put Screening. bioRxiv. 2020:922922.
https://doi.org/10.1101/2020.01.28.922922
.
citation_journal_title=Nat Rev Microbiol; citation_title=Origin and evolution of pathogenic coronaviruses; citation_author=J Cui, F Li, ZL Shi; citation_volume=17; citation_issue=3; citation_publication_date=2019; citation_pages=181-192; citation_doi=10.1038/s41579-018-0118-9; citation_id=CR6
citation_journal_title=Curr Res Microb Sci; citation_title=Minireview of progress in the structural study of SARS-CoV-2 proteins; citation_author=G Zhu, C Zhu, Y Zhu, F Sun; citation_volume=1; citation_publication_date=2020; citation_pages=53-61; citation_id=CR7
citation_journal_title=Comput Struct Biotechnol J; citation_title=Structural insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein; citation_author=A Khan, M Tahir Khan, S Saleem; citation_volume=18; citation_publication_date=2020; citation_pages=2174-2184; citation_doi=10.1016/j.csbj.2020.08.006; citation_id=CR8
citation_journal_title=J Med Virol; citation_title=Emerging coronaviruses: genome structure, replication, and pathogenesis; citation_author=Y Chen, Q Liu, D Guo; citation_volume=92; citation_issue=4; citation_publication_date=2020; citation_pages=418-423; citation_doi=10.1002/jmv.25681; citation_id=CR9
citation_journal_title=Antivir Res; citation_title=The SARS coronavirus nucleocapsid protein--forms and functions; citation_author=CK Chang, MH Hou, CF Chang; citation_volume=103; citation_publication_date=2014; citation_pages=39-50; citation_doi=10.1016/j.antiviral.2013.12.009; citation_id=CR10
Wu F, Zhao S, Yu B, et al. Complete genome characterisation of a novel coronavirus associated with severe humanrespiratory disease in Wuhan, China. bioRxiv. 2020:919183.
https://doi.org/10.1101/2020.01.24.919183
.
citation_journal_title=J Virol; citation_title=Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in Coronaviral life cycle; citation_author=Y Cong, M Ulasli, H Schepers; citation_volume=94; citation_issue=4; citation_publication_date=2020; citation_pages=e01925-e01919; citation_id=CR12
citation_journal_title=Viruses.; citation_title=The coronavirus nucleocapsid is a multifunctional protein; citation_author=R McBride, M Zyl, BC Fielding; citation_volume=6; citation_issue=8; citation_publication_date=2014; citation_pages=2991-3018; citation_doi=10.3390/v6082991; citation_id=CR13
Khan MT, Zeb MT, Ahsan H, Ahmed A, Ali A, Akhtar K, Malik SI, Cui Z, Ali S, Khan AS, Ahmad M, Wei DQ, Irfan M. SARS-CoV-2 nucleocapsid and Nsp3 binding: an in silico study. Arch Microbiol. 2021;203(1):59–66.
citation_journal_title=Cell Cycle; citation_title=Cell cycle dependent nucleolar localization of the coronavirus nucleocapsid protein; citation_author=R Cawood, SM Harrison, BK Dove; citation_volume=6; citation_issue=7; citation_publication_date=2007; citation_pages=863-867; citation_doi=10.4161/cc.6.7.4032; citation_id=CR15
citation_journal_title=J Virol; citation_title=Effect of phosphorylation of CM2 protein on influenza C virus replication; citation_author=T Goto, Y Shimotai, Y Matsuzaki; citation_volume=91; citation_issue=22; citation_publication_date=2017; citation_pages=e00773-e00717; citation_doi=10.1128/JVI.00773-17; citation_id=CR16
citation_journal_title=Nat Rev Mol Cell Biol; citation_title=The 3Ms of central spindle assembly: microtubules, motors and MAPs; citation_author=M Glotzer; citation_volume=10; citation_issue=1; citation_publication_date=2009; citation_pages=9-20; citation_doi=10.1038/nrm2609; citation_id=CR17
citation_journal_title=Trends Cell Biol; citation_title=The tubulin Detyrosination cycle: function and enzymes; citation_author=J Nieuwenhuis, TR Brummelkamp; citation_volume=29; citation_issue=1; citation_publication_date=2019; citation_pages=80-92; citation_doi=10.1016/j.tcb.2018.08.003; citation_id=CR18
citation_journal_title=Front Oncol; citation_title=Upregulated expression of TUBA1C predicts poor prognosis and promotes Oncogenesis in pancreatic ductal adenocarcinoma via regulating the cell cycle; citation_author=MAH Albahde, P Zhang, Q Zhang; citation_volume=10; citation_publication_date=2020; citation_pages=49; citation_doi=10.3389/fonc.2020.00049; citation_id=CR19
citation_journal_title=Genome Biol Evol; citation_title=Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family; citation_author=P Findeisen, S Mühlhausen, S Dempewolf; citation_volume=6; citation_issue=9; citation_publication_date=2014; citation_pages=2274-2288; citation_doi=10.1093/gbe/evu187; citation_id=CR20
citation_journal_title=Antivir Res; citation_title=Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus; citation_author=KW Cheng, SC Cheng, WY Chen; citation_volume=115; citation_publication_date=2015; citation_pages=9-16; citation_doi=10.1016/j.antiviral.2014.12.011; citation_id=CR21
citation_journal_title=J Virol; citation_title=Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis; citation_author=Y Wang, Y Sun, A Wu; citation_volume=89; citation_issue=16; citation_publication_date=2015; citation_pages=8416-8427; citation_doi=10.1128/JVI.00948-15; citation_id=CR22
citation_journal_title=J Virol; citation_title=Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase Us3 dictates viral pathogenicity in the central nervous system but not at the periphery; citation_author=A Kato, K Shindo, Y Maruzuru; citation_volume=88; citation_issue=5; citation_publication_date=2014; citation_pages=2775-2785; citation_doi=10.1128/JVI.03300-13; citation_id=CR23
citation_journal_title=J Virol; citation_title=Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation; citation_author=D Ross-Thriepland, M Harris; citation_volume=88; citation_issue=3; citation_publication_date=2014; citation_pages=1421-1432; citation_doi=10.1128/JVI.03017-13; citation_id=CR24
citation_journal_title=J Virol Methods; citation_title=Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design; citation_author=A Sheikh, A Al-Taher, M Al-Nazawi; citation_volume=277; citation_publication_date=2020; citation_pages=113806; citation_doi=10.1016/j.jviromet.2019.113806; citation_id=CR25
citation_journal_title=Nat Commun; citation_title=Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains; citation_author=Y Yuan, D Cao, Y Zhang; citation_volume=8; citation_publication_date=2017; citation_pages=15092.10; citation_id=CR26
citation_journal_title=Nucleic Acids Res; citation_title=ExPASy: the proteomics server for in-depth protein knowledge and analysis; citation_author=E Gasteiger, A Gattiker, C Hoogland; citation_volume=31; citation_issue=13; citation_publication_date=2003; citation_pages=3784-3788; citation_doi=10.1093/nar/gkg563; citation_id=CR27
citation_journal_title=Trends Biochem Sci; citation_title=NPS@: network protein sequence analysis; citation_author=C Combet, C Blanchet, C Geourjon; citation_volume=25; citation_issue=3; citation_publication_date=2000; citation_pages=147-150; citation_doi=10.1016/S0968-0004(99)01540-6; citation_id=CR28
citation_journal_title=Nucleic Acids Res; citation_title=SWISS-MODEL: homology modelling of protein structures and complexes; citation_author=A Waterhouse, M Bertoni, S Bienert; citation_volume=46; citation_issue=W1; citation_publication_date=2018; citation_pages=W296-W303; citation_doi=10.1093/nar/gky427; citation_id=CR29
citation_journal_title=Nucleic Acids Res; citation_title=The SWISS-MODEL repository-new features and functionality; citation_author=S Bienert, A Waterhouse, TA Beer; citation_volume=45; citation_issue=D1; citation_publication_date=2017; citation_pages=D313-D319; citation_doi=10.1093/nar/gkw1132; citation_id=CR30
citation_journal_title=J Mol Biol; citation_title=Deviations from standard atomic volumes as a quality measure for protein crystal structures; citation_author=J Pontius, J Richelle, SJ Wodak; citation_volume=264; citation_issue=1; citation_publication_date=1996; citation_pages=121-136; citation_doi=10.1006/jmbi.1996.0628; citation_id=CR31
citation_journal_title=Proteomics.; citation_title=Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence; citation_author=N Blom, T Sicheritz-Pontén, R Gupta; citation_volume=4; citation_issue=6; citation_publication_date=2004; citation_pages=1633-1649; citation_doi=10.1002/pmic.200300771; citation_id=CR32
citation_journal_title=Bioinformatics.; citation_title=PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels; citation_author=Y Choi, AP Chan; citation_volume=31; citation_issue=16; citation_publication_date=2015; citation_pages=2745-2747; citation_doi=10.1093/bioinformatics/btv195; citation_id=CR33