Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments

Bo Yang1, Yuan‐Qing Jiang2, Masudur Rahman1, Michael K. Deyholos2, Nat N. V. Kav1
1Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, T6G 2P5, Canada
2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada

Tóm tắt

Abstract Background

Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses.

Results

In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only.

The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns.

Conclusion

We identified a set of 13 BnWRKY genes from among 16 BnWRKY genes assayed, that are responsive to both fungal pathogens and hormone treatments, suggesting shared signaling mechanisms for these responses. This study suggests that a large number of BnWRKY proteins are involved in the transcriptional regulation of defense-related genes in response to fungal pathogens and hormone stimuli.

Từ khóa


Tài liệu tham khảo

Bolton MD, Thomma B, Nelson BD: Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Patho. 2006, 7 (1): 1-16.

Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NN: Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem. 2008, 56 (6): 1963-1976.

Sharma N, Hotte N, Rahman MH, Mohammadi M, Deyholos MK, Kav NNV: Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans : A proteomics-based approach. Proteomics. 2008, 8 (17): 3516-3535.

Sharma N, Rahman MH, Strelkov S, Thiagarajah M, Bansal VK, Kav NNV: Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Sci. 2007, 172 (1): 95-110.

Yang B, Srivastava S, Deyholos MK, Kav NNV: Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Sci. 2007, 173 (2): 156-171.

Chen W, Provart N, Glazebrook J, Katagiri F, Chang H-S: Expression profile matrices of Arabidopsis transcription factor genes predict their putative functions in response to environmental stresses. Plant Cell. 2002, 14: 559-574.

Durrant W, Rowland O, Piedras P, Hammond-Kossak K, Jones J: cDNA-AFLP reveales a striking overlap in the race-specific resistance and wound response expression profiles. Plant Cell. 2000, 12: 963-977.

Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA: The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet. 2000, 26 (4): 403-410.

Mysore K, Crasta O, Tuori R, Folkerts O, Swirsky P, Martin G: Comprehensive transcript polling of the PToand Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 2002, 32: 299-316.

Singh KB, Foley RC, Onate-Sanchez L: Transcription factors in plant defense and stress responses. Curr Opin in Plant Biol. 2002, 5 (5): 430-436.

Eulgem T, Rushton PJ, Robatzek S, Somssich IE: The WRKY superfamily of plant transcription factors. Trends in Plant Sci. 2000, 5 (5): 199-206.

Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich IE: Plant Homeodomain Protein Involved in Transcriptional Regulation of a Pathogen Defense-Related Gene. Plant Cell. 1994, 6 (5): 695-708.

Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE: Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 1996, 15 (20): 5690-5700.

Zhou JM, Tang XY, Martin GB: The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997, 16 (11): 3207-3218.

dePater S, Greco V, Pham K, Memelink J, Kijne J: Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res. 1996, 24 (23): 4624-4631.

Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE: Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 1999, 18 (17): 4689-4699.

Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R: Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol. 1995, 29 (4): 691-702.

Wang ZP, Yang PZ, Fan BF, Chen ZX: An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defence response. Plant J. 1998, 16 (4): 515-522.

Yang PZ, Chen CH, Wang ZP, Fan BF, Chen ZX: A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J. 1999, 18 (2): 141-149.

Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE: Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol. 2008, 68 (1–2): 81-92.

Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C: A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell. 2003, 15 (9): 2076-2092.

Babu MM, Iyer LM, Balaji S, Aravind L: The natural history of the WRKYGCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res. 2006, 34 (22): 6505-6520.

Ulker B, Somssich IE: WRKY transcription factors: from DNA binding towards biological function. Curr Opin in Plant Biol. 2004, 7 (5): 491-498.

Zhang YJ, Wang LJ: The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol. 2005, 5: 1

Zheng ZY, Mosher SL, Fan BF, Klessig DF, Chen ZX: Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol. 2007, 7: 2

Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu UH, Harter K, Jansson C, Wanke D: Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics. 2008, 9: 17

Ross CA, Liu Y, Shen QXJ: The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol. 2007, 49 (6): 827-842.

Kim YK, Li D, Kolattukudy PE: Induction of Ca2Þcalmodulin signaling by hard surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J Bacteriol. 1998, 180: 5144-5150.

Johnson CS, Kolevski B, Smyth DR: TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell. 2002, 14 (6): 1359-1375.

Lagace M, Matton DP: Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta. 2004, 219 (1): 185-189.

Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QJ: Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 2005, 137 (1): 176-189.

Xu YH, Wang JW, Wang S, Wang JY, Chen XY: Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol. 2004, 135 (1): 507-515.

Zhang ZL, Xie Z, Zou XL, Casaretto J, Ho THD, Shen QXJ: A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 2004, 134 (4): 1500-1513.

Zou XL, Seemann JR, Neuman D, Shen QXJ: A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem. 2004, 279 (53): 55770-55779.

Jiang YQ, Deyholos MK: Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006, 6: 25

Jiang Y-Q, Deyholos MK: Functional characterization of Arabidopsis WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. 2009, 69 (1–2): 91-105.

Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S: A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 2008, 49 (6): 865-879.

Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, et al: A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 2006, 25 (8): 836-847.

Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J: MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002, 415 (6875): 977-983.

Chen CH, Chen ZX: Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol. 2002, 129 (2): 706-716.

Dellagi A, Heilbronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DEL, Lyon GD, Birch PRJ: A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Interact. 2000, 13 (10): 1092-1101.

Dong J, Chen C, Chen Z: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol. 2003, 51 (1): 21-37.

Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, et al: Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot. 2007, 58 (8): 1999-2010.

Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H: Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 2007, 19 (6): 2064-2076.

Zheng ZY, Abu Qamar S, Chen ZX, Mengiste T: Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006, 48 (4): 592-605.

Oh SK, Bek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D: Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 2008, 177 (4): 977-989.

Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sano H: Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genomics. 2002, 267 (2): 154-161.

Liu RH, Zhao JW, Xiao Y, Meng JL: Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping. Sci China C Life Sci. 2005, 48 (5): 460-470.

McDowell JM, Dangl JL: Signal transduction in the plant immune response. Trends Biochem Sci. 2000, 25 (2): 79-82.

Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF: Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA. 1998, 95 (25): 15107-15111.

Berrocal-Lobo M, Molina A: Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact. 2004, 17 (7): 763-770.

Berrocal-Lobo M, Molina A, Solano R: Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002, 29 (1): 23-32.

Staswick PE, Yuen GY, Lehman CC: Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 1998, 15 (6): 747-754.

Kunkel BN, Brooks DM: Cross talk between signaling pathways in pathogen defense. Curr Opin in Plant Biol. 2002, 5 (4): 325-331.

Li J, Brader G, Palva ET: The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell. 2004, 16 (2): 319-331.

Audenaert K, De Meyer GB, Hofte MM: Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002, 128 (2): 491-501.

Henfling J, Bostock R, Kuc J: Effect of Abscisic-Acid on Rishitin and Lubimin Accumulation and Resistance to Phytophthora-Infestans and Cladosporium-Cucumerinum in Potato-Tuber Tissue-Slices. Phytopathology. 1980, 70 (11): 1074-1078.

Koga H, Dohi K, Mori M: Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol. 2004, 65 (1): 3-9.

Mohr PG, Cahill DM: Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol. 2003, 30 (4): 461-469.

Thaler JS, Bostock RM: Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology. 2004, 85 (1): 48-58.

Mauch-Mani B, Mauch F: The role of abscisic acid in plant-pathogen interactions. Curr Opin in Plant Biol. 2005, 8 (4): 409-414.

Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B: Dissecting the beta-aminobutyric acid-induced priming phenomenon in arabidopsis. Plant Cell. 2005, 17 (3): 987-999.

Ton J, Mauch-Mani B: beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 2004, 38 (1): 119-130.

Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R: Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J. 2002, 31 (3): 319-330.

Xie Z, Zhang ZL, Zou XL, Yang GX, Komatsu S, Shen QXJ: Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J. 2006, 46 (2): 231-242.

Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY: Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotech J. 2008, 6 (5): 486-503.

Sano H, Ohashi Y: Involvement of Small Gtp-Binding Proteins in Defense Signal-Transduction Pathways of Higher-Plants. Proc Natl Acad Sci USA. 1995, 92 (10): 4138-4144.

Sano H, Seo S, Koizumi N, Niki T, Iwamura H, Ohashi Y: Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant Cell Physiol. 1996, 37 (6): 762-769.

Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K, Ohashi Y: Expression of the Gene for a Small Gtp-Binding Protein in Transgenic Tobacco Elevates Endogenous Cytokinin Levels, Abnormally Induces Salicylic-Acid in Response to Wounding, and Increases Resistance to Tobacco Mosaic-Virus Infection. Proc Natl Acad Sci USA. 1994, 91 (22): 10556-10560.

Cary AJ, Liu WN, Howell SH: Cytokinin Action Is Coupled to Ethylene in Its Effects on the Inhibition of Root and Hypocotyl Elongation in Arabidopsis thaliana Seedlings. Plant Physiol. 1995, 107 (4): 1075-1082.

Rudd S: Expressed sequence tags: alternative or complement to whole genome sequences?. Trends in Plant Sci. 2003, 8 (7): 321-329.

Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999, 138-148.

Min XJ, Butler G, Storms R, Tsang A: OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005, 33: W677-W680.

Wu GZ, Shi QM, Niu Y, Xing MQ, Xue HW: Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res. 2008, 36: D1044-D1047.

Remm M, Storm CEV, Sonnhammer ELL: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001, 314 (5): 1041-1052.

van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM: A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol. 2008, 146 (4): 1983-1995.

Lewin B: Genes VII. 1999, Oxford University Press, London, 699

Schuler MA: Splice Site Requirements and Switches in Plants. Nuclear Pre-Mrna Processing in Plants. Berlin: Springer-Verlag Berlin. 2008, 326: 39-59.

Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K: Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics. 2007, 277 (6): 631-646.

Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somissich IE: Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact. 2007, 20 (4): 420-429.

Robatzek S, Somssich IE: Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002, 16 (9): 1139-1149.

Zhang ZQ, Li Q, Li ZM, Staswick PE, Wang MY, Zhu Y, He ZH: Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol. 2007, 145 (2): 450-464.

Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J: Engineered GFP as a vital reporter in plants. Curr Biol. 1996, 6 (3): 325-330.

Duarte JM, Cui LY, Wall PK, Zhang Q, Zhang XH, Leebens-Mack J, Ma H, Altman N, dePamphilis CW: Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol. 2006, 23 (2): 469-478.

Cao H, Bowling SA, Gordon AS, Dong XN: Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell. 1994, 6 (11): 1583-1592.

Kesarwani M, Yoo JM, Dong XN: Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol. 2007, 144 (1): 336-346.

Zhang YL, Tessaro MJ, Lassner M, Li X: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell. 2003, 15 (11): 2647-2653.

Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C: Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol. 2003, 51 (6): 895-911.

Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999, 284 (5423): 2148-2152.

Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M: Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000, 12 (3): 393-404.

Li FL, Wu XZ, Tsang E, Cutler AJ: Transcriptional profiling of imbibed Brassica napus seed. Genomics. 2005, 86 (6): 718-730.

Finkelstein RR, Gampala SSL, Rock CD: Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002, 14: S15-S45.

Finkelstein RR, Lynch TJ: The arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell. 2000, 12 (4): 599-609.

Imamura A, Hanaki N, Umeda H, Nakamura A, Suzuki T, Ueguchi C, Mizuno T: Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc Natl Acad Sci USA. 1998, 95 (5): 2691-2696.

Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y: Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science. 2006, 311 (5757): 94-98.

Dong X: SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1998, 1 (4): 316-323.

Durrant WE, Dong X: Systemic acquired resistance. Annu Rev Phytopathol. 2004, 42: 185-209.

Robert-Seilaniantz A, Navarro L, Bari R, Jones JD: Pathological hormone imbalances. Curr Opin Plant Biol. 2007, 10 (4): 372-379.

Duan MR, Nan J, Liang YH, Mao P, Lu L, Li LF, Wei CH, Lai LH, Li Y, Su XD: DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 2007, 35 (4): 1145-1154.

Wu KL, Guo ZJ, Wang HH, Li J: The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res. 2005, 12 (1): 9-26.

Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC, Zhong YF, Gu XC, He K, Luo JC: PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Res. 2008, 36: D966-D969.

Bowers JE, Chapman BA, Rong JK, Paterson AH: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003, 422 (6930): 433-438.

Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4 (10):

Thomas BC, Pedersen B, Freeling M: Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 2006, 16 (7): 934-946.

Rossberg M, Theres K, Acarkan A, Herrero R, Schmitt T, Schumacher K, Schmitz G, Schmidt R: Comparative sequence analysis reveals extensive microcolinearity in the Lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell. 2001, 13 (4): 979-988.

Lysak MA, Koch MA, Pecinka A, Schubert I: Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15 (4): 516-525.

Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ: Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005, 171 (2): 765-781.

Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, et al: Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell. 2006, 18 (6): 1348-1359.

Eulgem T, Somssich IE: Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol. 2007, 10 (4): 366-371.

Penninckx I, Eggermont K, Terras FRG, Thomma B, DeSamblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF: Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996, 8 (12): 2309-2323.

Penninckx I, Thomma B, Buchala A, Metraux JP, Broekaert WF: Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998, 10 (12): 2103-2113.

Xu XP, Chen CH, Fan BF, Chen ZX: Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 2006, 18 (5): 1310-1326.

Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J: A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA. 1998, 95 (12): 7209-7214.

Robatzek S, Somssich IE: A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J. 2001, 28 (2): 123-133.

Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel K-H: Identification of powdery midew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol. 2004, 55: 1-15.

Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich I, Schulze-Lefert P: Nuclear activity of MLA immune receptors links isolate-specific and basal diseaseresistance responses. Science. 2006, 113: 6372

Wang Y, Lin JS, Wang GX: Calcium-mediated mitochondrial permeability transition involved in hydrogen peroxide-induced apoptosis in tobacco protoplasts. J Integr Plant Biol. 2006, 48 (4): 433-439.

Quirino BF, Normanly J, Amasino RM: Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol. 1999, 40 (2): 267-278.

Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li WQ, Ogawa M, Yamauchi Y, Preston J, Aoki K, et al: The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. 2008, 55 (3): 526-542.

Journot-Catalino N, Somssich IE, Roby D, Kroj T: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell. 2006, 18 (11): 3289-3302.

Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inze D, Goossens A: Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA. 2008, 105 (4): 1380-1385.

De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, et al: Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact. 2005, 18 (9): 923-937.

Hare PD, Cress WA, van Staden J: The involvement of cytokinins in plant responses to environmental stress. J Plant Growth Regul. 1997, 23 (1–2): 79-103.

Lee B, Hong T, Byun SJ, Woo T, Choi YJ: ESTpass: a web-based server for processing and annotating expressed sequence tag (EST) sequences. Nucleic Acids Res. 2007, 35: W159-W162.

Frohman MA, Dush MK, Martin GR: Rapid Production of Full-Length cDNAs from Rare Transcripts – Amplification Using a Single Gene-Specific Oligonucleotide Primer. Proc Natl Acad Sci USA. 1988, 85 (23): 8998-9002.

Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599.

Hall B: Phylogenetic trees made easy: A how-to manual. 2007, Sinauer Associates Inc, Sunderland, Massachusetts, 3

Baldauf SL: Phylogeny for the faint of heart: a tutorial. Trends in Genetics. 2003, 19 (6): 345-351.