Identification and development of a core set of informative genic SNP markers for assaying genetic diversity in Chinese cabbage

Horticulture, Environment, and Biotechnology - Tập 60 - Trang 411-425 - 2019
Peirong Li1,2,3, Tongbing Su1,2,3, Shuancang Yu1,2,3, Huiping Wang1,2,3, Weihong Wang1,2,3, Yangjun Yu1,2,3, Deshuang Zhang1,2,3, Xiuyun Zhao1,2,3, Changlong Wen1,2,3, Fenglan Zhang1,2,3
1Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing, China
2Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
3Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China

Tóm tắt

Rapid, economical, and reliable genotyping is an important requirement for germplasm analysis and cultivar identification in crop species. Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) originated in China and is now an economically important vegetable crop worldwide, especially in East Asia. In this study, we evaluated 1167 single nucleotide polymorphisms (SNPs) among 166 representative Chinese cabbage inbred lines using a KASP genotyping assay. On the basis of polymorphisms and principal component analysis, we selected 60 core SNPs distributed on all Brassica rapa chromosomes with allele frequencies sufficiently balanced so as to provide adequate information for genetic identification. The core set of SNPs was used for construction of a neighbor-joining dendrogram, in which the 166 inbred lines were clustered into spring, summer, and autumn ecotype groups. Clustering of the ecotype groups was better resolved than that achieved with 1167 and 360 polymorphic SNP datasets. Stability and resolution of the core SNP markers were tested using 178 commercial hybrid Chinese cabbage cultivars to confirm their utility in genetic identification. The set of 60 informative and stable SNP markers showed high discriminatory power and relatively uniform genomic distribution (4–9 markers per chromosome). The SNPs represent a cost-efficient and accurate marker set for germplasm analysis and cultivar identification and are suitable for molecular marker-assisted breeding in Chinese cabbage.

Tài liệu tham khảo

Allen AM, Barker GLA, Berry ST (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099. https://doi.org/10.1111/j.1467-7652.2011.00628.x Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186. https://doi.org/10.1139/g93-024 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308 Buanec BL (2010) Protection of plant-related innovations: evolution and current discussion. World Patent Inf 28:50–62. https://doi.org/10.1016/j.wpi.2005.10.002 Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845. https://doi.org/10.1007/s00122-011-1630-8 Das S, Rajagopal J, Bhatia S, Srivastava PS, Lakshmikumaran M (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24:433–440. https://doi.org/10.1007/bf02942653 Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491. https://doi.org/10.1016/1050-3862(92)90005-P Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78. https://doi.org/10.1101/sqb.2003.68.69 Federico L, Amy V, Thomas C (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985. https://doi.org/10.1007/s00122-008-0837-9 Hiremath PJ, Kumar A, Penmetsa RV (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732. https://doi.org/10.1111/j.1467-7652.2012.00710.x Ke GL (2010) Chinese cabbage breeding. China Agricluture Press, Beijing, pp 18–24 Kuang M, Wei SJ, Wang YQ, Zhou DY, Lei MA, Fang D, Yang WH, Ma ZY (2016) Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J Integr Agr 15:954–962. https://doi.org/10.1016/S2095-3119(15)61226-6 Langridge P, Chalmers K, Mohler V, Schwarz G, Mackill DJ, Mcnally KL, Scheible WR, Törjek O, Altmann T, et al (2005) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture & forestry Vol 55. Springer, Berlin, pp 10–12. https://doi.org/10.1038/npg.els.0002024 Li P, Zhang S, Zhang S, Li F, Zhang H, Liu X, Wu J, Wang X, Sun R (2015) Carotenoid identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage. Mol Breed 35:72. https://doi.org/10.1007/s11032-015-0190-z Liu K, Muse SV (2005) POWERMARKER: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282 Liu YF, Zhang JH, Bo L, Yang XH, Yan-Gang LI, Ye W, Wang JM, Hui Z, Guan JJ (2013) Statistic analysis on quantitative characteristics for developing the DUS test guideline of Ranunculus asiaticus L. J Integr Agric 12:971–978. https://doi.org/10.1016/S2095-3119(13)60474-8 Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res 4:357–362 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalaski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 3:225–238. https://doi.org/10.1007/BF00564200 Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin in Plant Biol 5:94–100. https://doi.org/10.1016/S1369-5266(02)00240-6 Reid A, Hof L, Felix G, Rücker B, Tams S, Milczynska E, Esselink D, Uenk G, Vosman B et al (2011) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica 182:239–249. https://doi.org/10.1007/s10681-011-0462-6 Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in Eukaryotes. Micriobiol Mol Biol Rev 72:686–727. https://doi.org/10.1128/MMBR.00011-08 Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in Chickpea and Pigeonpea using the BeadXpress platform. Plant Genome 6:494. https://doi.org/10.3835/plantgenome2013.05.0017 Saxena RK, Varma Penmetsa R, Upadhyaya HD, Kumar A, Noelia CC, Rajeev KV (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in Pigeonpea and comparative mapping in Legumes. DNA Res 19:449–461. https://doi.org/10.1093/dnares/dss025 Soengas P, Cartea ME, Francisco M, Lema M, Velasco P (2011) Genetic structure and diversity of a collection of Brassica rapa subsp. rapa L. revealed by simple sequence repeat markers. J Agric Sci 149(05):617–624. https://doi.org/10.1017/s002185961100013x Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor and Appl Genet 79:497–506. https://doi.org/10.1007/bf00226159 Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray ™ platform. Biotechnol J 2:41–49. https://doi.org/10.1002/biot.200600213 Su T, Zhao X, Sui G, Yu S, Zhang F, Wang W, Zhang D et al (2017) Validation of a set of informative simple sequence repeats markers for variety identification in Pak-choi (Brassica rapa L.ssp. chinensis var.communis). Plant Breed 136:410–419. https://doi.org/10.1111/pbr.12483 Su T, Li P, Yang J, Sui G, Yu Y, Zhang D, Zhao X, Wang W, Wen C et al (2018) Development of cost-effective single nucleotide polymorphism marker assays for genetic diversity analysis in Brassica rapa. Mol Breed 38:42. https://doi.org/10.1007/s11032-018-0795-0 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121 Tian HL, Wang FG, Zhao JR, Yi HM, Wang L, Wang R, Yang Y, Song W (2015) Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed 35:136. https://doi.org/10.1007/s11032-015-0335-0 Tobias W, Simon M, Longin C, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Jochen CR (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486. https://doi.org/10.1007/s00122-013-2065-1 Varshney RK, Thiel T, Sretenovic-Rajicic T, Baum M, Valkoun J, Guo P, Grando S, Ceccarelli S, Graner A (2008) Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Mol Breed 22:1–13. https://doi.org/10.1007/s11032-007-9151-5 Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039. https://doi.org/10.1038/ng.919