Identification and characterization of a moonlighting protein-enolase for surface display in Streptococcus thermophilus

Yingli Mu1, Yongping Xin1, Tingting Guo1, Jing Kong1
1State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People’s Republic of China

Tóm tắt

Abstract Background

Streptococcus thermophilus is an important food starter and receiving more attention to serve as cell factories for production of high-valued metabolites. However, the low yields of intracellular or extracellular expression of biotechnological and biomedical proteins limit its practical applications.

Results

Here, an enolase EnoM was identified from S. thermophilus CGMCC7.179 with about 94% identities to the surface-located enolases from other Streptococcus spp. strains. The EnoM was used as an anchor to achieve surface display in S. thermophilus using GFP as a reporter. After respectively mixing the GFP-EnoM fusion protein or GFP with S. thermophilus cells in vitro, the relative fluorescence units (RFU) of the S. thermophilus cells with GFP-EnoM was 80-folds higher than that with purified GFP. The sharp decrease in the RFU of sodium dodecyl sulfate (SDS) pretreated cells compared to those of non-pretreated cells demonstrated that the membrane proteins were the binding ligand of EnoM. Furthermore, an engineered β-galactosidase (β-Gal) was also successfully displayed on the cell surface of S. thermophilus CGMCC7.179 and the relative activity of the immobilized β-Gal remained up to 64% after reused 8 times. Finally, we also demonstrated that EnoM could be used as an anchor for surface display in L. casei, L. bulgaricus, L. lactis and Leuconostoc lactis.

Conclusion

To our knowledge, EnoM from S. thermophilus was firstly identified as an anchor and successfully achieved surface display in LAB. The EnoM-based surface display system provided a novel strategy for the enzyme immobilization.

Từ khóa


Tài liệu tham khảo

Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact. 2016;15(1):1–16.

Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T. Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine. 2010;28:2810–7.

Chen SW, Zhong J, Huan LD. Expression of human insulin in lactic acid bacteria and its oral administration in non-obese diabetic mice. Wei Sheng Wu Xue Bao. 2007;47:987–91.

Ciacma K, Wieckiewicz J, Kedracka-Krok S, Kurtyka M, Stec M, Siedlar M, Baran J. Secretion of tumoricidal human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by recombinant Lactococcus lactis: optimization of in vitro synthesis conditions. Microb Cell Fact. 2018;17(1):1–16.

Robinson K, Chamberlain LM, Lopez MC, Rush CM, Marcotte H, Le Page RW, Wells JM. Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect Immun. 2004;72:2753–61.

Rhimi M, Chouayekh H, Gouillouard I, Maguin E, Bejar S. Production of d-tagatose, a low caloric sweetener during milk fermentation using l-arabinose isomerase. Bioresour Technol. 2011;102:3309–15.

Sak-Ubol S, Namvijitr P, Pechsrichuang P, Haltrich D, Nguyen TH, Mathiesen G, Eijsink VG, Yamabhai M. Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system. Microb Cell Fact. 2016;15:81.

Gandhi NN, Barrett-Wilt G, Steele JL, Rankin SA. Lactobacillus casei expressing methylglyoxal synthase causes browning and heterocyclic amine formation in parmesan cheese extract. J Dairy Sci. 2019;102:100–12.

Liu J, Kandasamy V, Wurtz A, Jensen PR, Solem C. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand. Appl Microbiol Biotechnol. 2016;100:9509–17.

Xin Y, Mu Y, Kong J, Guo T. Targeted and repetitive chromosomal integration enables high-level heterologous gene expression in Lactobacillus casei. Appl Environ Microbiol. 2019;85(9):e00033–19.

Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM, Hernandez PE. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J Biotechnol. 2011;156:76–86.

Kong W, Lu T. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth Biol. 2014;3:439–45.

Yeh CM, Huang XH, Sue CW. Functional secretion of a type 1 antifreeze protein analogue by optimization of promoter, signal peptide, prosequence, and terminator in Lactococcus lactis. J Agric Food Chem. 2008;56:8442–50.

Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol. 2004;53:427–33.

Minning S, Serrano A, Ferrer P, Sola C, Schmid RD, Valero F. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol. 2001;86:59–70.

Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P. Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol. 2002;68:3141–6.

Diep DB, Mathiesen G, Eijsink VGH, Nes IF. Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Curr Pharm Biotechno. 2009;10:62–73.

Yin S, Zhu H, Shen M, Li G, Lu S, Zhao Y, Le S, Tan Y, Peng Y, Hu F, Wang J. Surface display of heterologous beta-galactosidase in food-grade recombinant Lactococcus lactis. Curr Microbiol. 2018;75:1362–71.

Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, Gruss A, Langella P, Bermudez-Humaran LG. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 2005;13:89–98.

Fredriksen L, Kleiveland CR, Hult LT, Lea T, Nygaard CS, Eijsink VG, Mathiesen G. Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-kappaB in monocytes. Appl Environ Microbiol. 2012;78:5864–71.

Kalyanasundram J, Chia SL, Song AA, Raha AR, Young HA, Yusoff K. Surface display of glycosylated Tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol. 2015;15:113.

Nguyen HM, Mathiesen G, Stelzer EM, Pham ML, Kuczkowska K, Mackenzie A, Agger JW, Eijsink VG, Yamabhai M, Peterbauer CK. Display of a beta-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts. Microb Cell Fact. 2016;15:169.

Dieye Y, Usai S, Clier F, Gruss A, Piard JC. Design of a protein-targeting system for lactic acid bacteria. J Bacteriol. 2001;183:4157–66.

Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol. 2006;72:269–75.

Hu SM, Kong J, Kong WT, Guo TT, Ji MJ. Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria. Appl Environ Microb. 2010;76:2410–8.

Hu S, Kong J, Sun Z, Han L, Kong W, Yang P. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the S-layer protein. Microb Cell Fact. 2011;10:86.

Lecomte X, Gagnaire V, Briard-Bion V, Jardin J, Lortal S, Dary A, Genay M. The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microb Cell Fact. 2014;13:82.

Kuczkowska K, Mathiesen G, Eijsink VG, Oynebraten I. Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Fact. 2015;14:169.

Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev. 2005;29:435–63.

Linares DM, O’Callaghan TF, O’Connor PM, Ross RP, Stanton C. Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yogurt. Front Microbiol. 1876;2016:7.

Tarrah A, de Castilhos J, Rossi RC, Duarte VDS, Ziegler DR, Corich V, Giacomini A. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front Microbiol. 2018;9:2214.

Dandoy D, Fremaux C, de Frahan MH, Horvath P, Boyaval P, Hols P, Fontaine L. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microb Cell Fact. 2011;10(Suppl 1):S21.

Renye JA Jr, Somkuti GA. Cloning of milk-derived bioactive peptides in Streptococcus thermophilus. Biotechnol Lett. 2008;30:723–30.

Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P. Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol. 2010;76:451–60.

Zhou MM, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics. 2010;11:651.

Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK. Enolases from gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol. 2007;51:526–34.

Wang J, Wang K, Chen D, Geng Y, Huang X, He Y, Ji L, Liu T, Wang E, Yang Q, Lai W. Cloning and characterization of surface-localized alpha-enolase of Streptococcus iniae, an effective protective antigen in mice. Int J Mol Sci. 2015;16:14490–510.

Spurbeck RR, Harris PT, Raghunathan K, Arvidson DN, Arvidson CG. A moonlighting enolase from Lactobacillus gasseri does not require enzymatic activity to inhibit Neisseria gonorrhoeae adherence to epithelial cells. Probiotics Antimicro. 2015;7:193–202.

Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, Antonsson M, Ahrne S, Israelsen H, Madsen S. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res. 2013;168:245–53.

Feng YJ, Pan XZ, Sun W, Wang CJ, Zhang HM, Li XF, Ma Y, Shao ZQ, Ge JC, Zheng F. Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. J Infect Dis. 2009;200:1583–92.

Esgleas M, Li Y, Hancock MA, Harel J, Dubreuil JD, Gottschalk M. Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology. 2008;154:2668–79.

Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK. pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol. 2007;189:4539–43.

Tian C, Yang J, Zeng Y, Zhang T, Zhou Y, Men Y, You C, Zhu Y, Sun Y. Biosynthesis of raffinose and stachyose from sucrose via an in vitro multienzyme system. Appl Environ Microbiol. 2019;85:e02306.

Blibech M, Chaari F, Bhiri F, Dammak I, Ghorbel RE, Chaabouni SE. Production of manno-oligosaccharides from locust bean gum using immobilized Penicillium occitanis mannanase. J Mol Catal B-Enzym. 2011;73:111–5.

Tozakidis IE, Brossette T, Lenz F, Maas RM, Jose J. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and beta-glucosidase. Microb Cell Fact. 2016;15:103.

Xu Z, Zhang S, Mu Y, Kong J. Paenibacillus panacisoli enhances growth of Lactobacillus spp. by producing xylooligosaccharides in corn stover ensilages. Carbohydr Polym. 2018;184:435–44.

Xin Y, Guo T, Mu Y, Kong J. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria. Microb Cell Fact. 2017;16:116.

Linares DM, Kok J, Poolman B. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol. 2010;192:5806–12.

Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A. 2006;103:15611–6.

Guo T, Kong J, Zhang L, Zhang C, Hu S. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS ONE. 2012;7:e36296.