Identification and application of piwi-interacting RNAs from seminal plasma exosomes in Cynoglossus semilaevis

Bo Zhang1,2, Na Zhao3, Jia Lu4, Jinyuan Che1,2, Xiaoxu He4, Kefeng Liu4, Baolong Bao1,2
1International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology
2Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education
3Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
4Tianjin Sea Fisheries Research Institute, Tianjin, China

Tóm tắt

Abstract Background Piwi-interacting RNAs (piRNAs) have been linked to epigenetic and post-transcriptional gene silencing of retrotransposons in germ line cells, particularly in spermatogenesis. Exosomes are important mediators of vesicle transport, and the piRNAs in exosomes might play an important role in cell communication and signal pathway regulation. Moreover, exosomic piRNAs are promising biomarkers for disease diagnosis and physiological status indication. We used Cynoglossus semilaevis because of its commercial value and its sexual dimorphism, particularly the sex reversed “pseudomales” who have a female karyotype, produce sperm, and copulate with normal females to produce viable offspring. Results To determine whether piRNAs from fish germ line cells have similar features, seminal plasma exosomes from half-smooth tongue sole, C. semilaevis, were identified, and their small RNAs were sequenced and analysed. We identified six signature piRNAs as biomarkers in exosomes of seminal plasma from males and pseudomale C. semilaevis. Bioinformatic analysis showed that all six signatures were sex-related, and four were DNA methylation-related and transposition-related piRNAs. Their expression profiles were verified using real-time quantitative PCR. The expression of the signature piRNAs was markedly higher in males than in pseudomales. The signature piRNAs could be exploited as male-specific biomarkers in this fish. Conclusions These signatures provide an effective tool to explore the regulatory mechanism of sex development in C. semilaevis and may provide guidance for future research on the function of piRNAs in the generative mechanism of sex reversed “pseudomales” in C. semilaevis.

Từ khóa


Tài liệu tham khảo

Liao X, et al. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Mol Ecol Resour. 2007;7.

Chen S, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46:253–60. https://doi.org/10.1038/ng.2890.

Chen SL, et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY). 2007;9:273–80. https://doi.org/10.1007/s10126-006-6081-x.

Xu TJ, Chen SL, Ji XS, Sha ZX. Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol. 2009;27:192–201. https://doi.org/10.1016/j.fsi.2009.04.009.

Zhuang ZM, et al. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis, günther, 1873. J Appl Ichthyol. 2006;22:437–40.

Deng SP, et al. Gonadal differentiation and effects of temperature on sex determination in half-smooth tongue-sole, Cynoglossus semilaevis. J Fishery Sci China. 2007;15:1046–52.

Liao X, et al. Construction of a genetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY). 2009;11:699–709. https://doi.org/10.1007/s10126-009-9184-3.

Chen SL, et al. Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY). 2009;11:243–51. https://doi.org/10.1007/s10126-008-9139-0.

Chen SL, et al. Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY). 2012;14:120–8. https://doi.org/10.1007/s10126-011-9395-2.

Chen SL, et al. Molecular marker-assisted sex control in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture. 2008;283:7–12.

Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell. 2007;26:603–9. https://doi.org/10.1016/j.molcel.2007.05.021.

Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135:3–9. https://doi.org/10.1242/dev.006486.

Ruby JG, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell. 2006;127:1193–207. https://doi.org/10.1016/j.cell.2006.10.040.

Kandhavelu M, et al. Existence of snoRNA, microRNA, piRNA characteristics in a novel non-coding RNA: x-ncRNA and its biological implication in Homo sapiens. J Bioinformatics Seq Anal. 2009;1:31–40.

Faehnle CR, Joshua-Tor L. Argonautes confront new small RNAs. Curr Opin Chem Biol. 2007;11:569–77. https://doi.org/10.1016/j.cbpa.2007.08.032.

Brennecke J, et al. Discrete small RNA-generating loci as master regulators of transposon activity in drosophila. Cell. 2007;128:1089–103. https://doi.org/10.1016/j.cell.2007.01.043.

Lin H, et al. The role of the piRNA pathway in stem cell self-renewal. Dev Biol. 2008;319:479.

Toth KF, Pezic D, Stuwe E, Webster A. The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol. 2016;886:51–77. https://doi.org/10.1007/978-94-017-7417-8_4.

Ro S, Park C, Jin J, Sanders KM, Yan W. A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun. 2006;351:756–63. https://doi.org/10.1016/j.bbrc.2006.10.105.

Tang F, Hayashi K, Kaneda M, Lao K, Surani MA. A sensitive multiplex assay for piRNA expression. Biochem Biophys Res Commun. 2008;369:1190–4. https://doi.org/10.1016/j.bbrc.2008.03.035.

Sato K, et al. Krimper enforces an antisense bias on piRNA pools by binding AGO3 in the drosophila germline. Mol Cell. 2015;59:553–63. https://doi.org/10.1016/j.molcel.2015.06.024.

Liao X, Xu G, Chen SL. Molecular method for sex identification of half-smooth tongue sole (Cynoglossus semilaevis) using a novel sex-linked microsatellite marker. Int J Mol Sci. 2014;15:12952–8. https://doi.org/10.3390/ijms150712952.

Cui Y, et al. New locus reveals the genetic architecture of sex reversal in the Chinese tongue sole (Cynoglossus semilaevis). Heredity (Edinb). 2018;121:319–26. https://doi.org/10.1038/s41437-018-0126-6.

Zhang B, et al. Seminal plasma exosomes: promising biomarkers for identification of male and Pseudomales in Cynoglossus semilaevis. Mar Biotechnol (NY). 2019;21:310–9. https://doi.org/10.1007/s10126-019-09881-2.

Shao C, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014;24:604–15. https://doi.org/10.1101/gr.162172.113.

Wang G, Reinke V. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol. 2008;18:861–7. https://doi.org/10.1016/j.cub.2008.05.009.

Houwing S, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell. 2007;129:69–82. https://doi.org/10.1016/j.cell.2007.03.026.

Kirino Y, Mourelatos Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol. 2007;14:347–8. https://doi.org/10.1038/nsmb1218.

Wang CL, Wang ZP, Wang JQ, Li MY, Chen XW. Identification of candidate piRNAs in the gonads of Paralichthys olivaceus (Japanese flounder). Zool Res. 37:301–6.

Sun, Z., Hao, T. & Tian, J. Identification of exosomes and its signature miRNAs of male and female Cynoglossus semilaevis. Sci Rep 7, ', doi:https://doi.org/10.1038/s41598-017-00884-4 (2017).doi:https://doi.org/10.13918/j.issn.2095-8137.2016.5.301 (2016).

Le Thomas A, et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013;27:390–9. https://doi.org/10.1101/gad.209841.112.

Sienski G, Donertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151:964–80. https://doi.org/10.1016/j.cell.2012.10.040.

Zhang, B. et al. Novel molecular markers for high-throughput sex characterization of Cynoglossus semilaevis. Aquaculture 513, 15, doi: https://doi.org/10.1016/j.aquaculture.2019.734331 (2019).

Chen CY, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell. 2001;107:451–64.

Liu Q, Greimann JC, Lima CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell. 2006;127:1223–37. https://doi.org/10.1016/j.cell.2006.10.037.

Pefanis E, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015;161:774–89. https://doi.org/10.1016/j.cell.2015.04.034.

Lim J, et al. Nuclear proximity of Mtr4 to RNA exosome restricts DNA mutational asymmetry. Cell. 2017;169:523–537 e515. https://doi.org/10.1016/j.cell.2017.03.043.

Wasmuth EV, Januszyk K, Lima CD. Structure of an Rrp6-RNA exosome complex bound to poly(a) RNA. Nature. 2014;511:435–9. https://doi.org/10.1038/nature13406.

Basu U, et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011;144:353–63. https://doi.org/10.1016/j.cell.2011.01.001.

Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. Biochim Biophys Acta. 2013;1829:552–60. https://doi.org/10.1016/j.bbagrm.2013.01.006.

Flynn RA, Almada AE, Zamudio JR, Sharp PA. Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A. 2011;108:10460–5. https://doi.org/10.1073/pnas.1106630108.

Schaeffer D, van Hoof A. Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. Proc Natl Acad Sci U S A. 2011;108:2366–71. https://doi.org/10.1073/pnas.1013180108.

Schmid M, Jensen TH. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci. 2008;33:501–10. https://doi.org/10.1016/j.tibs.2008.07.003.

Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol. 2006;7:529–39. https://doi.org/10.1038/nrm1964.

Lykke-Andersen S, Brodersen DE, Jensen TH. Origins and activities of the eukaryotic exosome. J Cell Sci. 2009;122:1487–94. https://doi.org/10.1242/jcs.047399.

Januszyk K, Lima CD. Structural components and architectures of RNA exosomes. Adv Exp Med Biol. 2010;702:9–28.

Lemay JF, et al. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol. 2014;21:919–26. https://doi.org/10.1038/nsmb.2893.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.

Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439–41.

Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8. https://doi.org/10.1093/nar/gkm952.

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. https://doi.org/10.1093/nar/gkr688.

Aspelund T, et al. Analysing the large decline in coronary heart disease mortality in the Icelandic population aged 25-74 between the years 1981 and 2006. PLoS One. 2010;5:e13957. https://doi.org/10.1371/journal.pone.0013957.

Enright AJ, et al. MicroRNA targets in drosophila. Genome Biol. 2003;5:R1. https://doi.org/10.1186/gb-2003-5-1-r1.

Fahlgren N, Carrington J. C. miRNA target prediction in plants. Methods Mol Biol. 2010;592:51–7. https://doi.org/10.1007/978-1-60327-005-2_4.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.