Icariin: a Potential Compound for the Recovery of Tibial Dyschondroplasia Affected Chicken Via Up-Regulating BMP-2 Expression

Springer Science and Business Media LLC - Tập 20 - Trang 1-7 - 2018
Mujahid Iqbal1, Hui Zhang1, Khalid Mehmood1,2, Aoyun Li1, Xiong Jiang1, Yaping Wang1, Jialu Zhang1, Muhammad Kashif Iqbal1, Mujeeb Ur Rehman1, Wangyuan Yao1, Shijin Yang1, Jiakui Li1,3
1College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
2University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
3College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China

Tóm tắt

Tibial dyschondroplasia (TD) is a skeletal disease of fast growing chicken and other avian species. It is characterized by an avascular and non-mineralized growth plate, which leads to a deformed tibial bone and lameness. Unfortunately, this disease is not only responsible for causing huge economic losses but also raises animal welfare concerns. Icariin is a flavonoid, which is isolated from Epimedium pubescens herb, and it has been used to cure different diseases including bone fractures and osteoporosis. We designed this experiment to use icariin for the treatment of TD affect chickens; for this purpose, a total of 180 chicks were equally divided into three groups: control, TD and icariin. All the three groups were offered ad libitum same normal standard diet with an addition of thiram (50 mg/kg) from 3rd day to 7th day in TD and icariin group in order to induce TD in chickens. After the induction of TD, the chickens in icariin groups were fed standard diet with an addition of icariin at the rate of 10 mg/kg in drinking water to check the therapeutic effect of this flavonoid on TD. Our results showed that the icariin helped in restoring the TD lesion into a normal structure with significantly (P < 0.05) up-regulating the bone morphogenetic protein-2 (BMP-2) expression in the tibial growth plates (GP). Icariin increased the vascular area in the growth plate and decreased the average TD score. In conclusion, this study shows that icariin is a potential compound for the recovery of TD affected chickens via up-regulating the BMP-2 expression without posing a threat of ingestion of toxic veterinary drug residues to human beings upon the consumption of treated chickens.

Tài liệu tham khảo

Iqbal MK, Liu J, Nabi F, Rehman MU, Zhang H, Tahir AH, et al. Recovery of Chicken Growth Plate by Heat-Shock Protein 90 Inhibitors Epigallocatechin-3-Gallate and Apigenin in Thiram-Induced Tibial Dyschondroplasia. Avian Dis [Internet]. 2016;60:773–8. Available from: http://www.bioone.org/doi/10.1637/11425-041816-Reg Rath NC, Richards MP, Huff WE, Huff GR, Balog JM. Changes in the tibial growth plates of chickens with thiram-induced dyschondroplasia. J Comp Pathol. 2005;133:41–52. Nabi F, Shahzad M, Liu J, Li K, Han Z, Zhang D, et al. Hsp90 inhibitor celastrol reinstates growth plate angiogenesis in thiram-induced tibial dyschondroplasia. Avian Pathol. 2016;45:187–93. Tian WX, Zhang WP, Li JK, Bi DR, Guo DZ, Pan SY, et al. Identification of differentially expressed genes in the growth plate of broiler chickens with thiram-induced tibial dyschondroplasia. Avian Pathol. 2009;38:161–6. Praul CA, Ford BC, Gay CV, Pines M, Leach RM. Gene expression and tibial dyschondroplasia. Poult Sci. 2000;79:1009–13. Reddi AH. Initiation and promotion of Endochondral bone formation by bone morphogenetic Proteins : potential implications for avian Tibial Dyschondroplasia. Poult. Sci. Oxford University Press Oxford, UK. 2000;79:978–81. Liang W, Lin M, Li X, Li C, Gao B, Gan H, et al. Icariin promotes bone formation via the BMP-2 / Smad4 signal transduction pathway in the hFOB 1. 19 human osteoblastic cell line. Int J Mol Med Spandidos Publications. 2012;2:889–95. Cao H, Ke Y, Zhang Y, Zhang CJ, Qian W, Zhang GL. Icariin stimulates MC3T3-E1 cell proliferation and differentiation through up-regulation of bone morphogenetic protein-2. Int J Mol Med. 2012;29:435–9. Hsieh TP, Sheu SY, Sun JS, Chen MH, Liu MH. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. Phytomedicine Elsevier. 2010;17:414–23. Yin X, Chen Z, Liu Z, Ma Q-J, Dang G. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chin Med J [Internet]. Chinese Medical Association. 2007;120:204–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17355822. Wu H, Lien EJ, Lien LL. Chemical and pharmacological investigations of Epimedium species: a survey. Prog. Drug res. [internet]. Springer. 2003;60:1–57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12790338 Chen KM, Ge BF, Ma HP, Liu XY, Bai MH, Wang Y. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie [internet]. Govi-Verlag. 2005;60:939–42. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16398272 Li D, Yuan T, Zhang X, Xiao Y, Wang R, Fan Y. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthr Cartil Elsevier. 2012;20:1647–56. Mo Z, Li W, Zhai Y, Gong Q. Icariin attenuates OGD/R-induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy in PC12 cells. Evidence-Based Complement Altern Med Hindawi. 2016;2016 Zhang L, Zhang X, Li KF, Li DX, Xiao YM, Fan YJ, et al. Icariin promotes extracellular matrix synthesis and gene expression of chondrocytes in vitro. Phyther Res Wiley Online Library. 2012;26:1385–92. Chao Wei C, Qi Ping D, Tian You F, Yong Qiang C, Tao C. Icariin prevents cartilage and bone degradation in experimental models of arthritis. Mediators Inflamm Hindawi. 2016;2016 Liu N, Zhang T, Cao B-R, Luan F-Y, Liu R-X, Yin H-R, et al. Icariin possesses chondroprotective efficacy in a rat model of dexamethasone-induced cartilage injury through the activation of miR-206 targeting of cathepsin K. Int J Mol Med Spandidos Publications. 2018;41:1039–47. Rath NC, Huff WE, Balog JM, Huff GR. Comparative efficacy of different dithiocarbamates to induce tibial dyschondroplasia in poultry. Poult Sci Oxford University Press Oxford, UK. 2004;83:266–74. Mehmood K, Zhang H, Li K, Wang L, Rehman MU, Nabi F, et al. Effect of tetramethylpyrazine on tibial dyschondroplasia incidence, tibial angiogenesis, performance and characteristics via HIF-1α/VEGF signaling pathway in chickens. Sci Rep [Internet]. Springer US; 2018;8:2495. Available from: http://www.nature.com/articles/s41598-018-20562-3 Simsa S, Hasdai A, Dan H, Ornan EM. Induction of Tibial Dyschondroplasia in turkeys by Tetramethylthiuram Disulfide (Thiram). Poult. Sci. [Internet]. Oxford University Press Oxford, UK; 2007;86:1766–71. Available from: http://ps.oxfordjournals.org/content/86/8/1766.full Pines M, Hasdai A, Monsonego-Ornan E. Tibial dyschondroplasia – tools, new insights and future prospects. Worlds Poult Sci J [Internet]. 2005;61:285–97. Available from: http://www.journals.cambridge.org/abstract_S0043933905000231 Tian W, Li J, Qin P, Wang R, Ning G, Qiao J, et al. Screening of differentially expressed genes in the growth plate of broiler chickens with tibial dyschondroplasia by microarray analysis. BMC Genomics [Internet]. 2013;14:276. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3648502&tool=pmcentrez&rendertype=abstract. Herzog A, Genin O, Hasdai A, Shinder D, Pines M. Hsp90 and angiogenesis in bone disorders--lessons from the avian growth plate. Am J Physiol Regul Integr Comp Physiol [Internet]. 2011;301:R140–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21562096 Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE. Bone Morphogenetic Protein (BMP) Localization in Developing Human and Rat Growth Plate, Metaphysis, Epiphysis, and Articular Cartilage. J. Histochem. Cytochem. [Internet]. Journal of Histochemistry & Cytochemistry; 2000;48:1493–1502. Available from: http://journals.sagepub.com/doi/10.1177/002215540004801106 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. Elsevier; 2001;25:402–408. Scanes CG. The global importance of poultry. Poult Sci Oxford University Press Oxford, UK. 2007;86:1057–8. Cook ME. Skeletal deformities and their causes: introduction. Poult Sci [Internet]. 2000;79:982–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10901198 Nabi F, Li K, Shahzad M, Han Z, Zhang D, Liu J, et al. Gambogic acid inhibits Hsp90 expressions in thiram-induced tibial dyschondroplasia. Pak Vet J. 2016;36:224–6. Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, et al. In Vitro Effect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis. [Internet]. American Association of Avian Pathologists; 2017;61:372–7. Available from: https://doi.org/10.1637/11641-032817-RegR Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, et al. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front Pharmacol. 2016;7:1–18. Yang JX, Fichtner I, Becker M, Lemm M, Wang XM. Anti-proliferative efficacy of icariin on HepG2 hepatoma and its possible mechanism of action. Am J Chin Med [Internet]. 2009;37:1153–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19938223 Zhao J, Ohba S, Komiyama Y, Shinkai M, Chung U, Nagamune T. Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng. Part A. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2010;16:233–243. Nojima J, Kanomata K, Takada Y, Fukuda T, Kokabu S, Ohte S, et al. Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem [Internet]. ASBMB; 2010;285:15577–15586. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2865305&tool=pmcentrez&rendertype=abstract. fang ZJ, Li G, yan CC, ling MC, mi LMC, chao CY, et al. Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/β-catenin signaling pathway. Mol Cell Endocrinol Elsevier. 2010;314:70–4. Zhao J, Ohba S, Shinkai M, il CU, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun Elsevier. 2008;369:444–8.