Hypoxia Tolerance in Mammals and Birds: From the Wilderness to the Clinic

Annual Review of Physiology - Tập 69 Số 1 - Trang 113-143 - 2007
Jan‐Marino Ramirez1, Lars P. Folkow2, Arnoldus Schytte Blix2
1Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois 60637;
2Department of Arctic Biology, University of Tromso, Tromso, N-9037 Norway;,

Tóm tắt

All mammals and birds must develop effective strategies to cope with reduced oxygen availability. These animals achieve tolerance to acute and chronic hypoxia by (a) reductions in metabolism, (b) the prevention of cellular injury, and (c) the maintenance of functional integrity. Failure to meet any one of these tasks is detrimental. Birds and mammals accomplish this triple task through a highly coordinated, systems-level reconfiguration involving the partial shutdown of some but not all organs. This reconfiguration is achieved through a similarly complex reconfiguration at the cellular and molecular levels. Reconfiguration at these various levels depends on numerous factors that include the environment, the degree of hypoxic stress, and developmental, behavioral, and ecological conditions. Although common molecular strategies exist, the cellular and molecular changes in any given cell are very diverse. Some cells remain metabolically active, whereas others shut down or rely on anaerobic metabolism. This cellular shutdown is temporarily regulated, and during hypoxic exposure, active cellular networks must continue to control vital functions. The challenge for future research is to explore the cellular mechanisms and conditions that transform an organ or a cellular network into a hypometabolic state, without loss of functional integrity. Much can be learned in this respect from nature: Diving, burrowing, and hibernating animals living in diverse environments are masters of adaptation and can teach us how to deal with hypoxia, an issue of great clinical significance.

Từ khóa


Tài liệu tham khảo

10.1089/ast.2005.5.415

10.1126/science.493968

10.2307/1307946

10.1146/annurev.physiol.69.031905.162529

10.1001/archneurpsyc.1943.02290230022002

10.1016/0034-5687(71)90067-3

Singer D, Bach F, Bretschneider HJ, Kuhn HJ. 1993. Metabolic size allometry and the limits to beneficial metabolic reduction: hypothesis of a uniform specific minimal metabolic rate. See Ref. 8, pp.447–58

Hochachka PW, 1993, Surviving Hypoxia: Mechanisms of Control and Adaptation.

Folkow B, Neil E. 1971.Circulation.London: Oxford Univ. Press. 593 pp

Lutz PL, Nilsson GE, Prentice HM. 2003.The Brain Without Oxygen: Causes of Failure—Physiological and Molecular Mechanisms for Survivial.Dordrecht/Boston/London: Kluwer Acad. Publ. 3rd ed. 252 pp

10.1152/jn.1989.62.1.1

Watkins WA, 1985, Cetology, 49, 1

10.1071/ZO9910595

10.1007/s003000050391

10.2307/1369039

Scholander PF, 1940, Hvalrådets Skr., 22, 1

10.1016/0034-5687(70)90076-9

10.1126/science.151.3709.456

Ponganis PJ, 1999, J. Exp. Biol., 202, 781, 10.1242/jeb.202.7.781

Stephenson R, 1989, J. Exp. Biol., 141, 265, 10.1242/jeb.141.1.265

10.1016/S1095-6433(00)00231-2

10.1111/j.1748-7692.1995.tb00278.x

10.1111/j.1469-7998.1999.tb01024.x

10.1016/0034-5687(83)90072-5

10.1016/0034-5687(90)90013-O

10.1146/annurev.ph.51.030189.004233

10.1096/fj.03-1382fje

Burns JM, 2000, FASEB J., 14, A440

Polasek LK, 2001, J. Exp. Biol., 204, 209, 10.1242/jeb.204.2.209

Weber RE, 1974, Comp. Biochem. Physiol., 49, 197, 10.1016/0300-9629(74)90555-6

10.1007/BF00229642

10.1126/science.163.3870.953

10.1146/annurev.physiol.60.1.19

10.1038/197054a0

10.1111/j.1748-1716.1992.tb09402.x

10.1016/0034-5687(73)90077-7

10.1152/jappl.2001.90.5.1919

Blix AS, 1983, Handbook of Physiology. The Cardiovascular System III. Peripheral Circulation and Organ Blood Flow, 917

10.1152/physrev.1997.77.3.837

10.1152/ajplegacy.1938.122.1.207

10.1111/j.1748-1716.1983.tb07250.x

Elsner R, 1985, Am. J. Physiol., 249, H1119

Kjekshus JK, 1982, Am. J. Physiol., 242, R97

10.1016/0300-9629(73)90076-5

Blix AS, 1971, Comp. Biochem. Physiol., 40, 579, 10.1016/0300-9629(71)90242-8

White FC, 1990, Am. J. Physiol., 259, R849, 10.1152/ajpcell.1990.259.6.C849

10.1016/j.yjmcc.2004.03.013

10.1093/cvr/6.5.490

10.1126/science.153.3739.941

Davis RW, 1983, Am. J. Physiol., 245, R743

10.1152/ajplegacy.1974.227.6.1331

Blix AS, 1987, NIPS, 2, 64

10.1002/jcp.1030580307

10.1038/256037a0

Thompson D, 1993, J. Exp. Biol., 174, 139, 10.1242/jeb.174.1.139

10.1111/j.1748-1716.1974.tb05779.x

Daly MdeB, 1977, Am. J. Physiol., 232, H508

Hill RD, 1987, Am. J. Physiol., 253, R344

Guyton GP, 1995, Physiol., 79, 1148

10.1002/jcp.1030190107

10.1046/j.1365-201x.1999.00536.x

Caputa M, 1998, Am. J. Physiol., 275, R363

Blix AS, 2002, J. Physiol., 543, 7P

Kvadsheim PH, 2005, Am. J. Physiol., 289, R326

Marder E, Bucher D. 2007. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs.Annu. Rev. Physiol.69:in press

10.1523/JNEUROSCI.20-10-03522.2000

10.1242/jeb.00977

10.1385/MN:32:3:251

Boutilier RG, 2001, J. Exp. Biol., 204, 3171, 10.1242/jeb.204.18.3171

10.1152/physrev.1985.65.1.101

10.1016/j.brainres.2004.03.004

10.1152/ajplegacy.1963.205.6.1175

10.1152/jappl.1980.48.4.596

10.1038/jcbfm.1993.19

10.1152/jn.2000.83.4.1830

10.1203/00006450-199002000-00020

10.1016/0006-8993(91)91392-E

10.1016/0301-0082(93)90014-J

Siesjo BK, 1996, Adv. Neurol., 71, 209

10.1016/0006-8993(90)91276-M

10.1152/jn.1998.80.5.2378

10.1016/S0024-3205(97)00800-X

10.1152/jn.1994.71.3.1165

10.1038/jcbfm.1995.142

10.1523/JNEUROSCI.18-14-05212.1998

10.1523/JNEUROSCI.20-15-05858.2000

10.1016/j.neuron.2004.06.023

10.1016/j.conb.2004.10.011

10.1152/jn.2001.86.1.104

10.1038/75776

10.1111/j.1469-7793.2003.00731.x

10.1126/science.1059829

10.1046/j.1460-9568.2000.00928.x

10.1016/0301-0082(95)00042-9

Elsen FP, 1997, Soc. Neurosci. Abstr., 27, 495.11

10.1152/jn.00505.2004

10.1152/jappl.2000.88.6.2287

10.1113/expphysiol.2005.031922

10.1152/jappl.1993.74.1.312

10.1152/japplphysiol.00831.2003

10.1152/jn.1999.82.5.2163

10.1113/expphysiol.2005.030924

10.1080/10715760410001725526

10.1016/j.jelectrocard.2005.06.019

10.1111/j.1540-8167.2006.00390.x

10.1213/01.ANE.0000180999.81013.D0

Zenteno-Savín T, 2002, Comp. Biochem. Physiol., 133, 527

10.1046/j.1365-2869.2002.00289.x

10.1016/0034-5687(84)90109-9

10.1016/S0028-3908(02)00005-9

10.1002/clc.4960101202

10.1146/annurev.neuro.26.041002.131103

10.1152/jn.2002.87.6.2964

10.1038/nrn1927

10.1016/j.jacc.2006.01.066

Lyman CP, Willis JS, Malan A, Wang LCH. 1982.Hibernation and Torpor in Mammals and Birds.New York: Academic Press. 265 pp.

10.1146/annurev.ph.41.030179.001513

10.1152/physrev.00008.2003

10.1016/S1095-6433(99)00130-0

10.1016/j.resp.2004.03.014

Tøien Ø, 2001, Am. J. Physiol., 281, R572

10.1242/jeb.01114

10.1016/0034-5687(94)90116-3

10.1016/S1095-6433(99)00085-9

Ma YL, 2005, Am. J. Physiol., 289, R1297

10.1111/j.1365-2869.2006.00521.x

10.1016/0006-8993(94)90235-6

10.1016/S0166-4328(01)00346-1

10.1086/422227

10.1038/jcbfm.1994.26

10.1016/0301-0082(93)90021-J

10.1038/nrn1327

10.1093/cercor/bhh184

10.1161/01.STR.0000217409.60731.38

Igelmund P, 1996, Adaptation to the Cold: Tenth International Hibernation Symposium, 159

10.1016/j.cbpa.2005.09.003

10.1086/physzool.50.1.30155716

10.1016/S0014-5793(99)00584-0

10.1073/pnas.94.5.2062

10.1146/annurev.es.10.110179.001413

10.1007/BF02118650

10.1016/0300-9629(91)90367-L

10.1096/fj.04-3414fje

10.1063/1.354795

10.1073/pnas.92.12.5510

10.1152/physrev.1991.71.4.1135

10.1046/j.1365-201X.1997.574342000.x

10.1002/bies.10261

10.1016/0034-5687(80)90046-8

10.1038/353748a0

10.1146/annurev.ph.53.030191.000423

10.1152/jappl.1975.38.5.806

10.1073/pnas.95.4.1915

10.1016/0034-5687(71)90034-X

10.1016/j.ceca.2004.02.005

10.1016/j.pbiomolbio.2005.07.001

10.1126/science.152.3721.540