Hypothetical membrane mechanisms in essential tremor

Journal of Translational Medicine - Tập 6 - Trang 1-11 - 2008
Aasef G Shaikh1, Kenichiro Miura2, Lance M Optican3, Stefano Ramat4, Robert M Tripp5, David S Zee1
1Department of Neurology, The Johns Hopkins University, Baltimore, USA
2Graduate School of Medicine, Kyoto University, Kyoto, Japan
3National Eye Institute, National Institutes of Health, Bethesda, USA
4University of Pavia, Pavia, Italy
5FlexAble Systems, Fountain Hills, USA

Tóm tắt

Essential tremor (ET) is the most common movement disorder and its pathophysiology is unknown. We hypothesize that increased membrane excitability in motor circuits has a key role in the pathogenesis of ET. Specifically, we propose that neural circuits controlling ballistic movements are inherently unstable due to their underlying reciprocal innervation. Such instability is enhanced by increased neural membrane excitability and the circuit begins to oscillate. These oscillations manifest as tremor. Postural limb tremor was recorded in 22 ET patients and then the phenotype was simulated with a conductance-based neuromimetic model of ballistic movements. The model neuron was Hodgkin-Huxley type with added hyperpolarization activated cation current (Ih), low threshold calcium current (IT), and GABA and glycine mediated chloride currents. The neurons also featured the neurophysiological property of rebound excitation after release from sustained inhibition (post-inhibitory rebound). The model featured a reciprocally innervated circuit of neurons that project to agonist and antagonist muscle pairs. Neural excitability was modulated by changing Ih and/or IT. Increasing Ih and/or IT further depolarized the membrane and thus increased excitability. The characteristics of the tremor from all ET patients were simulated when Ih was increased to ~10× the range of physiological values. In contrast, increasing other membrane conductances, while keeping Ih at a physiological value, did not simulate the tremor. Increases in Ih and IT determined the frequency and amplitude of the simulated oscillations. These simulations support the hypothesis that increased membrane excitability in potentially unstable, reciprocally innervated circuits can produce oscillations that resemble ET. Neural excitability could be increased in a number of ways. In this study membrane excitability was increased by up-regulating Ih and IT. This approach suggests new experimental and clinical ways to understand and treat common tremor disorders.

Tài liệu tham khảo

McCormick DA: Pape HC Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol. 1990, 431: 319-42. Gilligan B: Propranolol in essential tremor. Lancet. 1972, 2: 980- Ondo W, Hunter C, Vuong KD, Schwartz K, Jankovic J: Gabapentin for essential tremor: a multiple-dose, double-blind, placebo-controlled trial. Mov Disord. 2000, 15 (4): 678-82. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL: Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997, 389: 385-9. Manto M, Laute MA: A possible mechanism for the beneficial effect of ethanol in essential tremor. Eur J Neurol. 2008, 15: 697-705. Eggers ED, Berger AJ: Mechanisms for the modulation of native glycine receptor channels by ethanol. J Neurophysiol. 2004, 91: 2685-95. Connor GS: A double-blind placebo-controlled trial of topiramate treatment for essential tremor. Neurology. 2002, 59: 132-4. White HS: Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia. 1999, 40: S2-S10. Sherrington CS: On reciprocal innervation of antagonistic muscles – tenth note. Roy Soc Proc. 1907, 52: 337-349. Llinás RR: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988, 242: 1654-1664. Ramat S, Leigh RJ, Zee DS, Optican LM: Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005, 160: 89-106. Shaikh AG, Miura K, Optican LM, Ramat S, Leigh RJ, Zee DS: A new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders. Brain. 2007, 130: 3020-31. Kralic JE, Criswell HE, Osterman JL, O'Buckley TK, Wilkie ME, Matthews DB, Hamre K, Breese GR, Homanics GE, Morrow AL: Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest. 2005, 115: 774-9. Deng H, Xie WJ, Le WD, Huang MS, Jankovic J: Genetic analysis of the GABRA1 gene in patients with essential tremor. Neurosci Lett. 2006, 401: 16-19. McCormick DA, Pape HC: Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol. 1990, 431: 291-318. Shaikh AG, Finlayson PG: Excitability of auditory brainstem neurons, in vivo, is increased by cyclic-AMP. Hear Res. 2005, 201: 70-80. Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR: Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature. 2001, 411: 805-10. Lüthi A, McCormick DA: Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. Nat Neurosci. 1999, 2: 634-41. Caligiuri MP, Tripp RM: A portable hand-held device for quantifying and standardizing tremor assessment. J Med Eng Technol. 2004, 28: 254-62. Moosmang S, Stielber J, Zong X, Biel M, Hofmann F, Ludwig A: Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem. 2001, 268: 1646-52. Deuschl G, Raethjen J, Lindemann M, Krack P: The pathophysiology of tremor. Muscle Nerve. 2001, 24: 716-735. Huguenard JR, McCormick DA: Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol. 1992, 68: 1373-83. McCormick DA, Huguenard JR: A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol. 1992, 68: 1384-400. Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR: In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci. 1996, 16: 169-85. Axelrad JE, Louis ED, Honig LS, Flores I, Ross GW, Pahwa R, Lyons KE, Faust PL, Vonsattel JP: Reduced purkinje cell number in essential tremor: a postmortem study. Arch Neurol. 2008, 65: 101-107. Louis ED, Vonsattel JP: The emerging neuropathology of essential tremor. Mov Disord. 2008, 23 (2): 174-82. Sotelo C, Llinas R, Baker R: Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol. 1974, 37: 541-559. Bal T, McCormick DA: Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J Neurophysiol. 1997, 77: 3145-56. Shill HA, Bushara KO, Mari Z, Reich M, Hallett M: Open-label dose-escalation study of oral 1-octanol in patients with essential tremor. Neurology. 2004, 62: 2320-2. Sinton CM, Krosser BI, Walton KD, Llinás RR: The effectiveness of different isomers of octanol as blockers of harmaline-induced tremor. Pflugers Arch. 1989, 414: 31-36. Sherman SM, Guillery RW: Exploring the Thalamus. 2001, Academic Press, San Diego, 144-167. Pinault D: The thalamic reticular nucleus: Structure, function and concept. Brain Res Rev. 2004, 46: 1-31. Guillery RW, Harting JK: Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J Comp Neurol. 2003, 463: 360-371. Hadipour-Niktarash A: A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus. J Comput Neurosci. 2006, 20: 299-320. Parent A, Hazrati LN: Functional anatomy of the basal ganglia. Part I: The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev. 1995, 20: 91-127. Takada M, Hattori T: Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat. J Comp Neurol. 1987, 262: 465-72. Nambu A, Llinas R: Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol. 1994, 72: 1127-39. Llinás R, Jahnsen H: Electrophysiology of mammalian thalamic neurones in vitro. Nature. 1982, 297: 406-408. Beurrier C, Congar P, Bioulac B, Hammond C: Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci. 1999, 19: 599-609. Jeanneteau F, Funalot B, Jankovic J, Deng H, Lagarde JP, Lucotte G: A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci USA. 2006, 103: 10753-8. Lucotte G, Lagarde JP, Funalot B, Sokoloff P: Linkage with the Ser9Gly DRD3 polymorphism in essential tremor families. Clin Genet. 2006, 69: 437-40. Sóvágó J, Makkai B, Gulyás B, Hall H: Autoradiographic mapping of dopamine-D2/D3 receptor stimulated [35S]GTPgammaS binding in the human brain. Eur J Neurosci. 2005, 22: 65-71. Hoffmann R, Baillie GS, Mackenzie SJ, Yarwood SJ, Houslay MD: The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase, HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 1999, 18: 893-903. Houslay MD, Milligan G: Tailoring cAMP signaling responses through isoform multiplicity. Trends Biochem Sci. 1997, 22: 217-224. Houslay MD, Sullivan M, Bolger GB: The multi-enzyme PDE4 cyclic AMP specific phosphodiesterase family: intracellular targeting, regulation and selective inhibition by compounds exerting anti-inflammatory and anti-depressant actions. Adv Pharmacol. 1998, 44: 225-342. Elble RJ: Essential tremor frequency decreases with time. Neurology. 2000, 55: 1547-51. Cannon SC: Pathomechanisms in Channelopathies of Skeletal Muscle and Brain. Annu Rev Neurosci. 2006, 29: 387-415.