Hypothesis Testing for Automated Community Detection in Networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adamic, 2005, Proc. 3rd Int. Wrkshp Link Discovery
Airoldi, 2008, Mixed membership stochastic blockmodels, J. Mach. Learn. Res., 9, 1981
Airoldi, 2013, Advances in Neural Information Processing Systems, 692
Amini, 2013, Pseudo-likelihood methods for community detection in large sparse networks, Ann. Statist., 41, 2097, 10.1214/13-AOS1138
Bartlett, 1937, Properties of sufficiency and statistical tests, Proc. R. Soc. Lond., 160, 268
Bickel, 2009, A nonparametric view of network models and Newman Girvan and other modularities, Proc. Natn. Acad. Sci. USA, 106, 21068, 10.1073/pnas.0907096106
Bloemendal, 2014, Isotropic local laws for sample covariance and generalized Wigner matrices, Electron. J. Probab., 19, 1
Chatterjee, 2015, Matrix estimation by universal singular value thresholding, Ann. Statist., 43, 177, 10.1214/14-AOS1272
Erdős, 2012, Rigidity of eigenvalues of generalized Wigner matrices, Adv. Math., 229, 1435, 10.1016/j.aim.2011.12.010
Füredi, 1981, The eigenvalues of random symmetric matrices, Combinatorica, 1, 233, 10.1007/BF02579329
Hamerly, 2003, Advances in Neural Information Processing Systems
Handcock, 2007, Model-based clustering for social networks (with discussion), J. R. Statist. Soc. A, 170, 301, 10.1111/j.1467-985X.2007.00471.x
Holland, 1983, Stochastic blockmodels: first steps, Socl Netwrks, 5, 109, 10.1016/0378-8733(83)90021-7
Karrer, 2011, Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 016107, 10.1103/PhysRevE.83.016107
Larsen, 1999, Proc. 5th Int. Conf. Knowledge Discovery and Data Mining, 16
Latouche, 2011, Overlapping stochastic block models with application to the French political blogosphere, Ann. Appl. Statist, 5, 309, 10.1214/10-AOAS382
Lee, 2014, A necessary and sufficient condition for edge universality of Wigner matrices, Duke Math. J., 163, 117, 10.1215/00127094-2414767
Lei, 2014, A goodness-of-fit test for stochastic block models
McAuley, 2012, Advances in Neural Information Processing Systems, 539
Newman, 2006, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, 74, 036104, 10.1103/PhysRevE.74.036104
Olhede, 2014, Network histograms and universality of blockmodel approximation, Proc. Natn. Acad. Sci. USA, 111, 14722, 10.1073/pnas.1400374111
Oliveira, 2009, Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges
Patterson, 2006, Population structure and eigenanalysis, PLOS Genet, 2, 2074, 10.1371/journal.pgen.0020190
Pelleg, 2000, Proc. 17th Int. Conf. Machine Learning, 727
Raftery, 2002, Latent space approaches to social network analysis, J. Am. Statist. Ass., 97, 1090, 10.1198/016214502388618906
Resnick, 1997, Protecting adolescents from harm: findings from the national longitudinal study on adolescent health, J. Am. Med. Ass., 278, 823, 10.1001/jama.1997.03550100049038
Rohe, 2011, Spectral clustering and the high-dimensional stochastic blockmodel, Ann. Statist., 39, 1878, 10.1214/11-AOS887
Snijders, 1997, Estimation and prediction for stochastic blockmodels for graphs with latent block structure, J. Classificn, 14, 75, 10.1007/s003579900004
Soshnikov, 1999, Universality at the edge of the spectrum in Wigner random matrices, Communs Math. Phys., 207, 697, 10.1007/s002200050743
Tracy, 1994, Level-spacing distributions and the airy kernel, Communs Math. Phys., 159, 151, 10.1007/BF02100489
Wigner, 1958, On the distribution of the roots of certain symmetric matrices, Ann. Math., 67, 325, 10.2307/1970008
Zachary, 1977, An information flow model for conflict and fission in small groups, J. Anthr. Res., 33, 452
Zhao, 2011, Community extraction for social networks, Proc. Natn. Acad. Sci. USA, 108, 7321, 10.1073/pnas.1006642108