Hyperthermic Spreading Depressions in the Immature Rat Hippocampal Slice

Journal of Neurophysiology - Tập 84 Số 3 - Trang 1355-1360 - 2000
Jie Wu1, Robert S. Fisher1,2
1Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix 85013-4496; and
2Neurology, University of Arizona, Tucson, Arizona 85721

Tóm tắt

Febrile seizures are the most common seizure type in children (6 mo to 5 yr). The pathophysiology of febrile seizures is unknown. Current genetic studies show that some febrile seizures result from channelopathies. We have performed electrophysiological experiments in in vitro hippocampal slices to test a novel hypothesis that a disordered regulation of ionic homeostasis underlies the genesis of febrile seizures. In transverse hippocampal CA1 slices from 104 rats, temperature increase from 34° to 40°C produced a series of spreading depressions (SDs), called hyperthermic SDs. The hyperthermic SDs were age-dependent, occurring in only 1/17 8–16 day-old animals, 44/49 17–60 day-old animals, and 11/20 rats older than than 60 days. The hyperthermic SDs usually occurred on the rising phase of the temperature. The mean temperature to trigger a first hyperthermic SD was 38.8 ± 1.3°C (mean ± SD, n = 44). The hyperthermic SDs induced a reversible loss of evoked synaptic potentials and a dramatic decrease of input resistance. Neuronal and field epileptiform bursting occurred in the early phases of the hyperthermic SD. During hyperthermic SDs, pyramidal cell membrane potential depolarized by 38.3 ± 4.9 mV ( n = 20), extracellular field shifted negative 18.5 ± 3.9 mV ( n = 44), and extracellular K+ rose reversibly to 43.8 ± 10.9 mM ( n = 6). Similar SDs could be evoked by ouabain or transient hypoxia with normal temperature. Tetrodotoxin could block initial epileptiform bursting, without blocking SDs. Hyperthermia-induced SDs should be investigated as possible contributing factors to febrile seizures.

Từ khóa


Tài liệu tham khảo

10.1002/hipo.450050602

10.1016/S0165-3806(96)00190-3

10.1523/JNEUROSCI.18-18-07189.1998

10.1038/70932

10.1152/jn.1994.72.1.1

Eckerman P, 1990, Am J Physiol, 258, R1140

10.1177/000992289403300502

10.1016/0006-8993(94)91835-X

Guedes RC, 1996, Braz J Med Biol Res, 29, 1407

10.1152/jn.1990.63.2.225

10.1016/0006-8993(87)91370-9

10.1093/hmg/7.1.63

10.1038/jcbfm.1990.99

10.1016/0165-3806(93)90123-R

10.1097/00001756-199611040-00065

10.1038/jcbfm.1990.14

Leao AA, 1986, Funct Neurol, 1, 363

10.1152/jn.1997.78.3.1212

Mayevsky A, 1998, Acta Neurochir Suppl (Wien), 71, 78

10.1016/0306-4522(93)90454-N

Rangel YM, 1999, Soc Neurosci Abstr, 637, 17

10.1016/S0165-3806(98)00018-2

10.1016/0006-8993(85)91004-2

10.1016/0006-8993(88)90619-1

10.1002/1531-8249(199901)45:1<75::AID-ART13>3.0.CO;2-W

10.1016/0304-3940(96)13112-8

10.1016/0306-4522(93)90405-5

10.1007/BF01186910

10.1523/JNEUROSCI.05-03-00817.1985

10.1152/jn.1996.75.2.597

10.1136/jmg.33.4.308

10.1038/448