Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Postel, 2000, Entering an era of water scarcity: The challenges ahead, Ecol. Appl., 10, 941, 10.1890/1051-0761(2000)010[0941:EAEOWS]2.0.CO;2
Hansson, 2002, Environmental issues in lakes and ponds: Current state and perspectives, Environ. Conserv., 29, 290, 10.1017/S0376892902000218
Findlay, S., and Sinsabaugh, R.L. (2003). Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, Academic Press.
Suggett, D.J., Prášil, O., and Borowitzka, M.A. (2010). Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Springer.
Furnas, 1990, In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates, J. Plankton Res., 12, 1117, 10.1093/plankt/12.6.1117
Smol, J.P., and Stoermer, E.F. (2010). The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press.
Yool, 2003, Role of diatoms in regulating the ocean’s silicon cycle, Glob. Biogeochem. Cycles, 17, 1, 10.1029/2002GB002018
Clesceri, L.S., Greenberg, A.E., and Eaton, A.D. (1994). Standard Methods for the Examination of Water and Wastewater, American Public Health Association.
Palmer, 2015, Remote sensing of inland waters: Challenges, progress and future directions, Remote Sens. Environ., 157, 1, 10.1016/j.rse.2014.09.021
Bukata, 2013, Retrospection and introspection on remote sensing of inland water quality: “Like Déjà Vu all over again”, J. Great Lakes Res., 39, 2, 10.1016/j.jglr.2013.04.001
Gitelson, 1990, Remote sensing of inland surface water quality–measurements in the visible spectrum, Acta Hydrophys., 34, 5
Gitelson, 1992, The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration, Int. J. Remote Sens., 13, 3367, 10.1080/01431169208904125
Rundquist, 1996, Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690 nm, Photogramm. Eng. Remote Sens., 62, 195
Fraser, 1998, Hyperspectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes, Int. J. Remote Sens., 19, 1579, 10.1080/014311698215360
Menken, 2006, Influence of chlorophyll and colored dissolved organic matter (CDOM) on lake reflectance spectra: Implications for measuring lake properties by remote sensing, Lake Reserv. Manag., 22, 179, 10.1080/07438140609353895
Schalles, 1998, Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake, J. Phycol., 34, 383, 10.1046/j.1529-8817.1998.340383.x
Mannheim, S., Segl, K., Heim, B., and Kaufmann, H. (2004, January 28–30). Monitoring of lake water quality using hyperspectral CHRIS-PROBA data. Proceedings of the 2nd CHRIS/Proba Workshop, Frascati, Italy.
Hunter, 2008, Spectral discrimination of phytoplankton colour groups: The effect of suspended particulate matter and sensor spectral resolution, Remote Sens. Environ., 112, 1527, 10.1016/j.rse.2007.08.003
Ifarraguerri, 2000, Unsupervised hyperspectral image analysis with projection pursuit, IEEE Trans. Geosci. Remote Sens., 38, 2529, 10.1109/36.885200
Yu, 2010, Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers, Photogramm. Eng. Remote Sens., 76, 1147, 10.14358/PERS.76.10.1147
Brezonik, 2015, Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters, Remote Sens. Environ., 157, 199, 10.1016/j.rse.2014.04.033
Maier, P.M., and Keller, S. (2018, January 23–26). Machine learning regression on hyperspectral data to estimate multiple water parameters. Proceedings of the 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands.
Keller, S., Riese, F.M., Stötzer, J., Maier, P.M., and Hinz, S. (2018, January 9–12). Developing a machine learning framework for estimating soil moisture with VNIR hyperspectral data. Proceedings of the ISPRS Technical Commission I Symposium, International Society for Photogrammetry and Remote Sensing (ISPRS), Karlsruhe, Germany.
Holbach, 2014, Three Gorges Reservoir: Density pump amplification of pollutant transport into tributaries, Environ. Sci. Technol., 48, 7798, 10.1021/es501132k
Maier, 2018, Estimation of Chlorophyll a, Diatoms and Green Algae Based on Hyperspectral Data with Machine Learning Approaches, Tagungsband der 37. Wissenschaftlich-Technische Jahrestagung der DGPF e.V., Volume 27, 49
Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504
Breiman, L. (1997). Arcing The Edge, Statistics Department, University of California. Technical Report 486.
Altman, 1992, An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression, Am. Stat., 46, 175, 10.1080/00031305.1992.10475879
Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learning, Springer.
Riese, F.M., and Keller, S. (2018, January 22–27). Introducing a Framework of Self-Organizing Maps for Regression of Soil Moisture with Hyperspectral Data. Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain.
Pedregosa, 2011, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M. (2016). TensorFlow: A system for large-scale machine learning. arXiv.
Chen, 2014, Deep Learning-Based Classification of Hyperspectral Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2094, 10.1109/JSTARS.2014.2329330
Keller, 2018, Modeling Subsurface Soil Moisture Based on Hyperspectral Data: First Results of a Multilateral Field Campaign, Tagungsband der 37. Wissenschaftlich-Technische Jahrestagung der DGPF e.V., Volume 27, 34
Kingma, D.P., and Ba, J.L. (2015, January 7–9). Adam: A Method for Stochastic Optimization. Proceedings of the International Conference on Learning Representations, San Diego, CA, USA.
Neville, 1977, Passive remote sensing of phytoplankton via chlorophyll α fluorescence, J. Geophys. Res., 82, 3487, 10.1029/JC082i024p03487