Hyperbolic systems of conservation laws II

Communications on Pure and Applied Mathematics - Tập 10 Số 4 - Trang 537-566 - 1957
Peter D. Lax

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1073/pnas.41.10.743

10.1016/S0065-2156(08)70100-5

Chandrasekhar S. On the Decay of Plane Shock Waves Ballistic Research Lab. Aberdeen Proving Ground Maryland Report No. 423 1943.

Cole J. D., 1951, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9, 226

Courant R., 1948, Supersonic Flow and Shock Waves

10.1002/cpa.3160010301

Friedrichs K. O. Wave Motions in Magnetohydrodynamics Los Alamos Scientific Lab. Technical Report 1954.

Friedrichs K. O. Nichtlineare Differenzialgleichungen Notes of lectures delivered in Göttingen Summer 1955.

Germain P. andBader R. Unicite des e'coulements avec chocs dans la me'canique de Burgers Office Nationale d'Etudes et de Recherches Aeronautiques Paris 1953 pp.1–13.

Goldner S. Existence and Uniqueness Theorems for Two Systems of Non‐Linear Hyperbolic Differential Equations for Functions of Two Independent Variables Thesis New York University 1949.

10.1002/cpa.3160030302

Keller J. B. Decay of finite amplitude sound waves unpublished note 1955.

Ladyzhenskaya A., 1956, On the construction of discontinuous solutions of quasilinear hyperbolic equations as limits to the solutions of the respective parabolic equations when the viscosity coefficient is approaching zero, Doklady Akad. Nauk SSSR, 3, 291

Lax P. D. On Discontinuous Initial Value Problems for Nonlinear Equations and Finite Difference Schemes L.A.M.S. 1332 Los Alamos 1952.

Lax P. D., 1954, The initial value problem for nonlinear hyperbolic equations in two independent variables, Ann. of Math. Studies, 33, 211

10.1002/cpa.3160070112

Lax P. D. Difference Approximation to Solutions of Linear Differential Equations — An Operator Theoretical Approach Conference on partial differential equations Summer 1954 University of Kansas Technical Report 14 1955.

10.1002/cpa.3160090206

Lighthill M. J., 1956, Viscosity effects in sound waves of finite amplitude, Surveys in Mechanics, Taylor Anniversary Volume

10.1080/14786445008561152

Von Neumann J. Proposal and Analysis of a Numerical Method for the Treatment of Hydrodynamical Shock Problems National Defense and Research Committee Report AM551 1944.

10.1063/1.1699639

Olejnik O. A., 1954, On Cauchy's problem for nonlinear equations in the class of discontinuous functions, Doklady Akad. Nauk SSSR, 95, 451

Olejnik O. A., 1954, On Cauchy's problem for nonlinear equations in the class of discontinuous functions, Uspehi Matem. Nauk, 9, 231

Olejnik O. A., 1955, Boundary problems for partial differential equations with small parameter in the highest order and Cauchy's problem for nonlinear equations, Uspehi Matem. Nauk, 10, 229

Olejnik O. A., 1956, On discontinuous solutions of nonlinear differential equations, 1098

Olejnik O. A., 1956, Cauchy's problem for nonlinear differential equations of first order with discontinuous initial data, Trudy Moscow, Mat. Obsc, 5, 433

Petrowsky I. G. Lectures on Partial Differential Equations Moscow 1953.

Vvedenskaya N. D., 1956, The difference method solution of Cauchy's problem for a nonlinear equation with discontinuous initial values, Doklady Akad. Nauk SSSR, 3, 517

10.1002/cpa.3160050305

Mandelbrojt S., 1939, Sur les fonctions convexes, C. R. Acad. Sci. Paris, 209, 977

10.4153/CJM-1949-007-x

Friedrichs K. O. Ein Verfahren der Variationsrechnung Nachr. Akad. Wiss. Göttingen. Math.‐Phys. K1. IIa. 1929 pp.13–20.

10.1007/BF02589354