Hyperbolic conservation laws with stiff relaxation terms and entropy

Communications on Pure and Applied Mathematics - Tập 47 Số 6 - Trang 787-830 - 1994
Gui‐Qiang Chen1, C. David Levermore2, Tai‐Ping Liu3
1University-of Chicago
2University of Arizona
3Stanford University

Tóm tắt

Abstract

We study the limiting behavior of systems of hyperbolic conservation laws with stiff relaxation terms. Reduced systems, inviscid and viscous local conservation laws, and weakly nonlinear limits are derived through asymptotic expansions. An entropy condition is introduced for N × N systems that ensures the hyperbolicity of the reduced inviscid system. The resulting characteristic speeds are shown to be interlaced with those of the original system. Moreover, the first correction to the reduced system is shown to be dissipative. A partial converse is proved for 2 × 2 systems. This structure is then applied to study the convergence to the reduced dynamics for the 2 × 2 case. © 1994 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1002/cpa.3160460503

10.1007/978-3-642-50235-4_6

10.1007/BF01218291

10.1002/cpa.3160320502

10.1007/978-1-4612-1039-9

Chen G.‐Q., 1990, The compensated compactness method and the system of isentropic gas dynamics

10.1007/BF00375416

10.1002/cpa.3160460504

Chen G.‐Q, 1989, A study on application approaches of the theory of compensated compactness, Chinese Sci. Bull., 34, 15

1988, Chinese Sci. Bull., 9, 641

10.1512/iumj.1977.26.26029

Dafermos C. M., 1985, Contemporary Issues in the Dynamic Behavior of Continuous Media, LCDS Lecture Notes, 85

Ding X. Chen G.‐Q. andLuo P. Convergence of the Lax‐Friedrichs schemes for the isentropic gas dynamics(I) Acta Math. Sci. (English Ed.) 5 1985 pp.415–432;

1987, Acta Math. Sci. (Chinese), 7, 467

10.1007/BF00251724

Glimm J., 1986, The continuous structure of discontinuities, Lecture Notes in Phys., 344, 177

10.1007/BF00251726

Jin S. andLevermore C. D. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms submitted toJ. Comput. Phys. 1993.

10.1007/978-1-4612-1054-2

10.1137/1.9781611970562

10.1007/978-1-4899-2314-1_14

10.1007/BF01210707

Murat F., 1981, L'injection du cone positif de H −1 duns W−1,q est compacte pour tout q < 2, J. Math. Pures Appl., 60, 309

Renardy M., 1987, Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics 35

10.1063/1.862610

10.1007/BF00375140

Stoker J. J., 1957, Water Waves

Tartar L., 1979, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot‐Watt Symposium 4, 136

Vincenti W. G., 1965, Introduction to Physical Gas Dynamics

Whitham G. B., 1974, Linear and Nonlinear Waves

10.1002/cpa.3160440604