Liệu Pháp Oxy Cao Áp Cải Thiện Viêm Tuỵ Cấp Tính ở Chuột Qua Con Đường Mitochondria

Digestive Diseases and Sciences - Tập 65 - Trang 3558-3569 - 2020
He Zhao1, Baiping Ge1, Yi Yuan2, Gang Wang1
1Department of Emergency Medicine, People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
2Department of Hyperbaric Oxygen, People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China

Tóm tắt

Viêm tuỵ cấp tính (AP) là một bệnh phổ biến của hệ tiêu hóa. Cơ chế của liệu pháp oxy cao áp (HBO) đối với AP vẫn chưa được làm rõ hoàn toàn. Nghiên cứu này điều tra tác động của HBO trong AP và liệu nó có hoạt động thông qua con đường apoptosis trung gian mitochondrial hay không. Tám mươi con chuột Sprague-Dawley đực được phân chia ngẫu nhiên thành bốn nhóm: nhóm kiểm soát (8 chuột), nhóm sham (24 chuột), nhóm AP (24 chuột) và nhóm AP + HBO (24 chuột). AP được kích thích bằng cách thắt ống tụy. Nhóm AP + HBO được điều trị bằng HBO bắt đầu từ 6 giờ sau khi kích thích. Tám con chuột trong mỗi nhóm được giết thịt vào các ngày 1, 2 và 3 sau khi kích thích để đánh giá tổn thương tụy, tiềm năng màng mitochondria, mức ATP và mức biểu hiện của BAX, Bcl-2, caspase-3, caspase-9 và PARP trong mô tụy, cũng như mức amylase, lipase và cytokine pro-inflammatori trong máu. Liệu pháp HBO đã giảm mức độ nghiêm trọng của AP và giảm điểm histopathological cũng như mức amylase, lipase và cytokine pro-inflammatory trong huyết thanh. So với việc chỉ kích thích AP, liệu pháp HBO làm tăng mức biểu hiện của protein apoptotic BAX, caspase-3, caspase-9 và PARP và mức ATP trong mô, đồng thời giảm mức biểu hiện của protein chống apoptotic Bcl-2 và tiềm năng màng mitochondria vào ngày đầu tiên; các kết quả vào ngày thứ hai phần nào nhất quán với ngày đầu, trong khi không có sự khác biệt rõ rệt vào ngày thứ ba. Liệu pháp HBO có thể kích thích apoptosis phụ thuộc caspase ở chuột AP để giảm mức độ viêm tụy, có thể do điều chỉnh con đường apoptosis mitochondrial của các thành viên gia đình Bcl-2.

Từ khóa

#viêm tụy cấp tính #liệu pháp oxy cao áp #apoptosis #mitochondria #chuột Sprague-Dawley

Tài liệu tham khảo

Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA, Yadav D. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. 2016;1:45–55. Lankisch PG, Apte M, Banks PA. Acute Pancreatitis. Lancet. 2015;386:85–96. Tenner S, Baillie J, DeWitt J, Vege SS. American college of gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol. 2013;108:1400–1415. https://doi.org/10.1038/ajg.2013.218. Bhatia M. Apoptosis versus necrosis in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2004;286:G189–G196. Leindler L, Morschl É, László F, Mándi Y, Takács T, et al. Importance of cytokines, nitric oxide, and apoptosis in the pathological process of necrotizing pancreatitis in rats. Pancreas. 2004;29:157–161. Bhatia M. Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? J Cell Mol Med. 2004;8:402–409. Mareninova OA, Sung KF, Hong P, et al. Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J Biol Chem. 2006;281:3370–3381. Frossard JL, Rubbia-Brandt L, Wallig MA, et al. Severe acute pancreatitis and reduced acinar cell apoptosis in the exocrine pancreas of mice deficient for the Cx32 gene. Gastroenterology. 2003;124:481–493. Tejada S, Batle JM, Ferrer MD, et al. Therapeutic effects of hyperbaric oxygen in the process of wound healing. Curr Pharm Des. 2019;25:1682–1693. https://doi.org/10.2174/1381612825666190703162648. Halbach JL, Prieto JM, Wang AW, et al. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am J Physiol Regul Integr Comp Physiol. 2019;317:R160–R168. Bian H, Huang L, Li B, et al. The arousal effect of hyperbaric oxygen through orexin/hypocretin an upregulation on ketamine/ethanol-induced unconsciousness in male rats. J Neurosci Res. 2020;98:201–211. https://doi.org/10.1002/jnr.24414. Inal V, Mas MR, Isik AT, et al. A new combination therapy in severe acute pancreatitis–hyperbaric oxygen plus 3-aminobenzamide: an experimental study. Pancreas. 2015;44:326–330. Bai X, Sun B, Pan S, et al. Down-regulation of hypoxia-inducible factor-1alpha by hyperbaric oxygen attenuates the severity of acute pancreatitis in rats. Pancreas. 2009;38:515–522. Yu QH, Zhang PX, Liu Y, Liu W, Yin N. Hyperbaric oxygen preconditioning protects the lung against acute pancreatitis induced injury via attenuating inflammation and oxidative stress in a nitric oxide dependent manner. Biochem Biophys Res Commun. 2016;478:93–100. Bai X, Song Z, Zhou Y, et al. The apoptosis of peripheral blood lymphocytes promoted by hyperbaric oxygen treatment contributes to attenuate the severity of early stage acute pancreatitis in rats. Apoptosis Int J Prog Cell Death. 2014;19:58–75. https://doi.org/10.1007/s10495-013-0911-x. Meyerholz DK, Samuel I. Morphologic characterization of early ligation-induced acute pancreatitis in rats. Am J Surg. 2007;194:652–658. https://doi.org/10.1016/j.amjsurg.2007.07.014. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44–56. https://doi.org/10.1097/00000658-199201000-00007. Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996;378:107–110. https://doi.org/10.1016/0014-5793(95)01431-4. Cavalcante GC, Schaan AP, Cabral GF, et al. A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 2019;. https://doi.org/10.3390/ijms20174133. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–1525. Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther. 2017;8:10–25. https://doi.org/10.4292/wjgpt.v8.i1.10. Malleo G, Mazzon E, Siriwardena AK, Cuzzocrea S. TNF-alpha as a therapeutic target in acute pancreatitis–lessons from experimental models. Sci World J. 2007;7:431–448. https://doi.org/10.1100/tsw.2007.98. Zhang FH, Sun YH, Fan KL, et al. Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-alpha and augmentation of interleukin-10. BMC Gastroenterol. 2017;17:100. https://doi.org/10.1186/s12876-017-0651-4. Zhang H, Yang W, Li Y, et al. Astaxanthin ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol. 2018;56:18–28. https://doi.org/10.1016/j.intimp.2018.01.011. Christophi C, Millar I, Nikfarjam M, Muralidharan V, Malcontenti-Wilson C. Hyperbaric oxygen therapy for severe acute pancreatitis. J Gastroenterol Hepatol. 2007;22:2042–2046. Gw B, Cs P. Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenterol. 2006;12:7087–7096. Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis. Pancreatology. 2005;5:132–144. https://doi.org/10.1159/000085265. Koh SL, Tan JW, Muralidharan V, Christophi C. The effect of hyperbaric oxygen on apoptosis and proliferation in severe acute pancreatitis. HPB Off J Int Hepato Pancreato Biliary Assoc. 2009;11:629–637. Gukovskaya AS, Perkins PE, Zaninovic VJ, et al. Mechanisms of cell death after pancreatic duct obstruction in the opossum and the rat. Gastroenterology. 1996;110:875–884. Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology. 2011;140:2116–2125. Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002;54:375–429. Kim JS, Qian T. Lemasters JJ Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124:494–503. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163. Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–1243. https://doi.org/10.1038/sj.cdd.4402148. Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214–215. https://doi.org/10.1126/science.1081274. Zhou Z, Daugherty WP, Sun D, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg. 2007;106(4):687–694. Mei LH, Yang G, Fang F. Hyperbaric oxygen combined with 5-aminolevulinic acid photodynamic therapy inhibited human squamous cell proliferation. Biol Pharm Bull. 2019;42:394–400. Harada H, Grant S. Apoptosis regulators. Rev Clin Exp Hematol. 2003;7:117–138. Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22:8758–8773. https://doi.org/10.1038/sj.onc.1206891. Zn O, Cl M, Sj K. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–619. Zhang XP, Tian H, Lu B, et al. Tissue microarrays in pathological examination of apoptotic acinar cells induced by dexamethasone in the pancreas of rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2007;6:527–536. Inuzuka K, Unno N, Yamamoto N, et al. Effect of hyperbarically oxygenated-perfluorochemical with University of Wisconsin solution on preservation of rat small intestine using an original pressure-resistant portable apparatus. Surgery. 2007;142:57–66. https://doi.org/10.1016/j.surg.2007.03.002.