Xử lý thủy kim loại của pin lithium ion đã qua sử dụng bằng cách sử dụng tác nhân hòa tan và chiết xuất thân thiện với môi trường

Journal of Material Cycles and Waste Management - Tập 25 - Trang 3303-3315 - 2023
Sibananda Sahu1, Niharbala Devi1,2
1Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, India
2Department of Chemistry, Institute of Technical Education and Research, Siksha ‘O’Anusandhan [Deemed to be University], Bhubaneswar, India

Tóm tắt

Sự cần thiết phải bảo tồn môi trường và đáp ứng nhu cầu ngày càng tăng đối với kim loại quý đã khiến việc tái chế pin lithium-ion (LIB) đã qua sử dụng trở nên quan trọng cho việc kinh doanh một cách bền vững. Một quy trình ngâm hòa tan thân thiện với môi trường bằng axit ascorbic đã được đề xuất trong công trình này để chiết xuất các kim loại quan trọng từ mẫu LIB đã qua xử lý nhiệt. Việc ngâm hòa tan tối ưu Li (100%) và Co (99,8%) được đạt được trong các điều kiện tối ưu, chẳng hạn như 0,8 mol/L axit ascorbic, 60 phút thời gian ngâm, nhiệt độ 70 °C và mật độ bột 50 g/L. Để hiểu cơ chế ngâm hòa tan, động lực học ngâm hòa tan đã được khảo sát chi tiết bằng nhiều mô hình phản ứng. Khác với các phương pháp chiết xuất dung môi truyền thống, đặc biệt là liên quan đến các vấn đề môi trường, dung môi xanh không pha loãng Aliquat 336 đã được sử dụng trong công trình này để tách các kim loại quan trọng mà không cần sử dụng các chất pha loãng độc hại. Dạng thiocyanate của Aliquat 336 (Aliquat 336-SCN) đã được sử dụng để chiết xuất chọn lọc Co mà không có sự chiết xuất đồng thời Li. Việc chiết xuất cobalt đạt 99,9% với tỉ lệ pha 1:1 và 2 giai đoạn chiết xuất ngược. Sau bốn giai đoạn tách chiết chéo bằng 2,5 mol/L KSCN với tỉ lệ O/A 1/5, khoảng 99,4% Co đã được thu hồi.

Từ khóa

#pin lithium-ion #tái chế #axit ascorbic #chiết xuất kim loại quý #môi trường

Tài liệu tham khảo

Chen H, Gu S, Guo Y, Dai X, Zeng L, Wang K, He C, Dodbiba G, Wei Y, Fujita T (2021) Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3. Hydrometallurgy 205:105746. https://doi.org/10.1016/j.hydromet.2021.105746 Cars Volvo, Volvo Cars to go all electric, (2017). https://www.media.volvocars.com/global/en-gb/media/pressreleases/210058 Toyota motor corporation, environmental report 2018. (2018). https://global.toyota/pages/global_toyota/sustainability/report/er/er18_07-13_en.pdf Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106. https://doi.org/10.1016/S0378-7753(01)00887-4 Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N, Wang Y (2019) Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3:2622–2646. https://doi.org/10.1016/j.joule.2019.09.014 Sun S, Jin C, He W, Li G, Zhu H, Huang J (2021) Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Sci Total Environ 776:145913. https://doi.org/10.1016/j.scitotenv.2021.145913 https://www.statista.com/statistics/1246914/capacity-of-lithium-ion-batteries-placed-on-the-global-market/ Wang W, Zhang Y, Zhang L, Xu S (2020) Cleaner recycling of cathode material by in-situ thermite reduction. J Clean Product 249:119340. https://doi.org/10.1016/j.jclepro.2019.119340 Li J, Lai Y, Zhu X, Liao Q, Xia A, Huang Y, Zhu X (2020) Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process. J Hazard Mater 398:122955. https://doi.org/10.1016/j.jhazmat.2020.122955 Wang K, Zhang G, Luo M (2022) Recovery of valuable metals from cathode—anode mixed materials of spent lithium-ion batteries using organic acids. Separations 9:259. https://doi.org/10.3390/separations9090259 Roy JJ, Rarotra S, Krikstolaityte V, Zhuoran KW, Cindy YD, Tan XY, Carboni M, Meyer D, Yan Q, Srinivasan M (2022) Green recycling methods to treat lithium-ion batteries E-waste: a circular approach to sustainability. Adv Mater 34:2103346. https://doi.org/10.1002/adma.202103346 Xiao J, Niu B, Xu Z (2021) Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent. J Hazard Mater 418:126319. https://doi.org/10.1016/j.jhazmat.2021.126319 Xiao J, Niu B, Song Q, Zhan L, Xu Z (2021) Novel targetedly extracting lithium: an environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery. J Hazard Mater 404:123947. https://doi.org/10.1016/j.jhazmat.2020.123947 Zhao J, Zhang B, Xie H, Qu J, Qu X, Xing P, Yin H (2020) Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent. Environ Res 181:108803. https://doi.org/10.1016/j.envres.2019.108803 Mohanty A, Sahu S, Sukla LB, Devi N (2021) Application of various processes to recycle lithium-ion batteries (LIBs): a brief review. Mater Today Proc 47:1203–1212. https://doi.org/10.1016/j.matpr.2021.03.645 Nayaka GP, Zhang Y, Dong P, Wang D, Zhou Z, Duan J, Li X, Lin Y, Meng Q, Pai KV, Manjanna J, Santhosh G (2019) An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J Environ Chem Eng 7:102854. https://doi.org/10.1016/j.jece.2018.102854 Li G, Rao M, Jiang T, Huang Q, Peng Z (2011) Leaching of limonitic laterite ore by acidic thiosulfate solution. Miner Eng 24:859–863. https://doi.org/10.1016/j.mineng.2011.03.010 Wang R-C, Lin Y-C, Wu S-H (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99:194–201. https://doi.org/10.1016/j.hydromet.2009.08.005 Medić DV, Sokić MD, Nujkić MM, Đorđievski SS, Milić SM, Alagić SČ, Antonijević MM (2023) Cobalt extraction from spent lithium-ion battery cathode material using a sulfuric acid solution containing SO2. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-022-01580-w Chen X, Ma H, Luo C, Zhou T (2017) Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater 326:77–86. https://doi.org/10.1016/j.jhazmat.2016.12.021 Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K (2015) Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources 282:544–551. https://doi.org/10.1016/j.jpowsour.2015.02.073 Sahu S, Devi N (2022) Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction. Environ Sci Poll Res. https://doi.org/10.1007/s11356-022-24560-x de OliveiraDemarco J, StefanelloCadore J, da Silveira F, de Oliveira E, HiromitsuTanabe D (2019) Assumpção Bertuol recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy 190:105169. https://doi.org/10.1016/j.hydromet.2019.105169 Sahu S, Devi N (2023) Two-step leaching of spent lithium-ion batteries and effective regeneration of critical metals and graphitic carbon employing hexuronic acid. RSC Adv 13:7193–7205. https://doi.org/10.1039/D2RA07926G Verma A, Johnson GH, Corbin DR, Shiflett MB (2020) Separation of lithium and cobalt from LiCoO2: a unique critical metals recovery process utilizing oxalate chemistry. ACS Sustain Chem Eng 8:6100–6108. https://doi.org/10.1021/acssuschemeng.0c01128 Chen X, Fan B, Xu L, Zhou T, Kong J (2016) An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod 112:3562–3570. https://doi.org/10.1016/j.jclepro.2015.10.132 Yang Y, Lei S, Song S, Sun W, Wang L (2020) Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manage 102:131–138. https://doi.org/10.1016/j.wasman.2019.09.044 Nayl AA, Elkhashab RA, Badawy SM, El-Khateeb MA (2017) Acid leaching of mixed spent Li-ion batteries. Arab J Chem 10:S3632–S3639. https://doi.org/10.1016/j.arabjc.2014.04.001 Chen M, Wang R, Qi Y, Han Y, Wang R, Fu J, Meng F, Yi X, Huang J, Shu J (2021) Cobalt and lithium leaching from waste lithium ion batteries by glycine. J Power Sources 482:228942. https://doi.org/10.1016/j.jpowsour.2020.228942 Li L, Fan E, Guan Y, Zhang X, Xue Q, Wei L, Wu F, Chen R (2017) Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain Chem Eng 5:5224–5233. https://doi.org/10.1021/acssuschemeng.7b00571 Zhou S, Zhang Y, Meng Q, Dong P, Fei Z, Li Q (2021) Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration. J Environ Manage 277:111426. https://doi.org/10.1016/j.jenvman.2020.111426 Islam A, Roy S, Khan MA, Mondal P, Teo SH, Taufiq-Yap YH, Ahmed MT, Choudhury TR, Abdulkreem-Alsultan G, Khandaker S, Awual MdR (2021) Improving valuable metal ions capturing from spent Li-ion batteries with novel materials and approaches. J Mol Liquids 338:116703. https://doi.org/10.1016/j.molliq.2021.116703 Yang J, Jiang L, Liu F, Jia M, Lai Y (2020) Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant. Trans Nonferrous Metals Soc China 30:2256–2264. https://doi.org/10.1016/S1003-6326(20)65376-6 Yu M, Zhang Z, Xue F, Yang B, Guo G, Qiu J (2019) A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid. Sep Purif Technol 215:398–402. https://doi.org/10.1016/j.seppur.2019.01.027 Masias A, Marcicki J, Paxton WA (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 6:621–630. https://doi.org/10.1021/acsenergylett.0c02584 Raj T, Chandrasekhar K, Kumar AN, Sharma P, Pandey A, Jang M, Jeon B-H, Varjani S, Kim S-H (2022) Recycling of cathode material from spent lithium-ion batteries: challenges and future perspectives. J Hazard Mater 429:128312. https://doi.org/10.1016/j.jhazmat.2022.128312 Mossali E, Picone N, Gentilini L, Rodrìguez O, Pérez JM, Colledani M (2020) Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J Environ Manage 264:110500. https://doi.org/10.1016/j.jenvman.2020.110500 Zhou Z, Fan J, Liu X, Hu Y, Wei X, Hu Y, Wang W, Ren Z (2020) Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 191:105244. https://doi.org/10.1016/j.hydromet.2019.105244 Sahu S, Mohapatra M, Devi N (2022) Effective hydrometallurgical route for recovery of energy critical elements from E-wastes and future aspects. MaterToday Proc. https://doi.org/10.1016/j.matpr.2022.05.491 Zeng X, Li J (2014) Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. J Hazard Mater 271:50–56. https://doi.org/10.1016/j.jhazmat.2014.02.001 Zante G, Braun A, Masmoudi A, Barillon R, Trébouet D, Boltoeva M (2020) Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents. Minerals Eng 156:106512. https://doi.org/10.1016/j.mineng.2020.106512 Bulgariu L, Bulgariu D (2013) Selective extraction of Hg (II), Cd (II) and Zn (II) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems. Sep Purif Technol 118:209–216. https://doi.org/10.1016/j.seppur.2013.07.007 Zheng H, Dong T, Sha Y, Jiang D, Zhang H, Zhang S (2021) Selective extraction of lithium from spent lithium batteries by functional ionic liquid. ACS Sustain Chem Eng 9:7022–7029. https://doi.org/10.1021/acssuschemeng.1c00718 Zheng H, Huang J, Dong T, Sha Y, Zhang H, Gao J, Zhang S (2022) A novel strategy of lithium recycling from spent lithium-ion batteries using imidazolium ionic liquid. Chinese J Chem Eng 41:246–251. https://doi.org/10.1016/j.cjche.2021.09.020 Vander Hoogerstraete T, Wellens S, Verachtert K (2013) Binnemans Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid separations relevant to rare-earth magnet recycling. Green Chem 15:919–927. https://doi.org/10.1039/C3GC40198G Tran TT, Liu Y, Lee MS (2021) Separation of cobalt, nickel, and copper metal using the mixture of HCl in ethylene glycol and Aliquat 336 in kerosene. J Market Res 14:2333–2344. https://doi.org/10.1016/j.jmrt.2021.07.139 Xu L, Chen C, Fu M-L (2020) Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101. Hydrometallurgy 197:105439. https://doi.org/10.1016/j.hydromet.2020.105439 Dhiman S, Gupta B (2019) Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J Clean Prod 225:820–832. https://doi.org/10.1016/j.jclepro.2019.04.004 Inman G, Nlebedim IC, Prodius D (2022) Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals. Energies 15:628. https://doi.org/10.3390/en15020628 Santhosh G, Nayaka GP (2021) Cobalt recovery from spent Li-ion batteries using lactic acid as dissolution agent. Clean Eng Technol 3:100122. https://doi.org/10.1016/j.clet.2021.100122 SobekovaFoltova S, VanderHoogerstraete T, Banerjee D (2019) Binnemans Separation and purification technology samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep Purific Technol. https://doi.org/10.1016/j.seppur.2018.07.069 Zante G, Masmoudi A, Barillon R, Trébouet D, Boltoeva M (2020) Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids. J Ind Eng Chem 82:269–277. https://doi.org/10.1016/j.jiec.2019.10.023 Othman EA, van der Ham AGJ, Miedema H, Kersten SRA (2020) Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Sep Purific Technol 252:117435. https://doi.org/10.1016/j.seppur.2020.117435 Nayl AA (2010) Extraction and separation of Co (II) and Ni (II) from acidic sulfate solutions using aliquat 336. J Hazard Mater 173:223–230. https://doi.org/10.1016/j.jhazmat.2009.08.072 Rybka P, Regel-Rosocka M (2012) Nickel (II) and cobalt (II) extraction from chloride solutions with quaternary phosphonium salts. Sep Sci Technol 47:1296–1302. https://doi.org/10.1080/01496395.2012.672532 Refly S, Floweri O, Mayangsari TR, Sumboja A, Santosa SP, Ogi T, Iskandar F (2020) Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes. ACS Sustain Chem Eng 8:16104–16114. https://doi.org/10.1021/acssuschemeng.0c01006 Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sourc 218:21–27. https://doi.org/10.1016/j.jpowsour.2012.06.068 Lie J, Liu J-C (2021) Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent ascorbic acid. Sep Purific Technol 266:118458. https://doi.org/10.1016/j.seppur.2021.118458