Sự hấp thu hydro bởi nốt rễ của Robinia pseudoacacia

Trees - Tập 8 - Trang 99-103 - 1993
Mechthild Röhm1, Wolfgang Streit1, Harold J. Evans2, Dietrich Werner1
1Department of Biology, Philipps-Universität, Marburg (Lahn), Germany
2Department of Biology, Reed College, Portland, USA

Tóm tắt

Việc hấp thu hydro được cho là làm tăng hiệu quả của quá trình cố định nitơ bằng cách tái chế H2 được sản xuất bởi nitrogenase mà nếu không sẽ bị mất đi do khuếch tán. Trong nghiên cứu này, chúng tôi chứng minh khả năng của tám chủng Rhizobium trong việc hấp thu hydro phân tử. Quá trình hấp thu từ các mẫu đồng nhất nốt của Robinia pseudoacacia được đo lường amperometrically dưới điều kiện ức chế nitrogenase. Hoạt động hấp thu được phát hiện là thấp hơn rõ rệt so với các nốt đậu nành. Thêm vào đó, hoạt động hydrogenase đã được phát hiện nhờ khả năng của các bacteroid trong việc khử methylene blue trong sự hiện diện của hydro. Chúng tôi đã chứng minh rằng các gen cấu trúc hydrogenase có mặt trong đối sinh vật của cây sồi đen, Rhizobium sp. chủng R1, bằng cách sử dụng phương pháp lai với một plasmit chứa các gen hydrogenase từ R. leguminosarum bv. viceae.

Từ khóa

#hydro #hấp thu #cố định nitơ #Rhizobium #hydrogenase #Robinia pseudoacacia

Tài liệu tham khảo

Arp JD (1992) Hydrogen cycling in symbiontic bacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 432–460 Basit HA, Angle JS, Salem S, Gewaily EM, Kotob SI, van Berkum P (1991) Phenotypic diversity among strains of Bradyrhizobium japonicum belonging to serogroup 110. Appl Environ Microbiol 57: 1570–1572 Batzli JM (1991) Indigenous rhizobial diversity of Robinia pseudoacacia L., and nodulation studies of Maackia amurensis maxim, & rupr. and Sophora japonica L. M. Sc. Thesis, Department of Horticulture, University of Maryland, College Park, Maryland Batzli JM, Graves WR, van Berkum P (1992) Diversity among rhizobia effective with Robiniap seudoacacia L. Appl Environ Microbiol 58: 2137–2143 van Berkum P (1987) Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum. J Bacteriol 169: 4565–4569 Dixon ROD (1967) Hydrogen uptake and exchange by pea root nodules. Ann Bot 31: 179–188 Dixon ROD (1968) Hydrogenase in pea root nodule bacteroids. Arch Microbiol 62: 272–283 Drevon JJ, Kalia VC, Heckmann MO, Salsac L (1987) Influence of the Bradyrhizobium japonicum hydrogenase on the growth of Glycine and Vigna Species. Appl Environ Microbiol 53: 610–612 Evans HJ, Burris RH (1992) Highlights in biological nitrogen fixation during the last 50 years. In: Stacy G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 1–42 Evans HJ, Hanus FJ, Haugland RA, Cantrell MA, XU LS, Russell SA, Lambert GR, Harker AR (1985) Hydrogen recycling in nodules affects nitrogen fixation and growth of soybeans. In: Shibles R (ed) Proceedings of the world soybean research conference. III. Westview Press, Boulder, pp 935–942 Fuhrmann J (1990) Symbiotic effectiveness of indigenous soybean bradyrhizobia as related to serological, morphological, rhizobia toxine and hydrogenase phenotypes. Appl Environ Microbiol 56: 224–229 Hanus FJ, Carter KR, Evans HJ (1980) Techniques for measurement of hydrogen evolution by nodules. Methods Enzymol 69: 731–739 Haugland RA, Hanus FJ, Cantrell MA, Evans HJ (1983). Rapid colony screening method for identifying hydrogenase activity in Rhizobium japonicum. Appl Environ Microbiol 45: 892–897 Herbert D, Philipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol. 5 b. Academic Press, New York, pp 249–252 van Kessel C, Roskoski JP, Wood T, Montano J (1983) 15N2 fixation and H2 evolution by six species of tropical leguminous trees. Plant Physiol 72: 909–910 Lambert GR, Hanus FJ, Rüssel SA, Evans HJ (1985) Determination of the hydrogenase status of individual legume nodules by a methylene blue reduction assay. Appl Environ Microbiol 50: 537–539 Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Sys Bacteriol 41: 417–426 Röhm M, Werner D (1991) Nitrate levels affect the development of the black locust-Rhizobium symbiosis. Trees 5: 227–231 Röhm M, Werner D (1992) Robiniapseudoacacia-Rhizobium symbiosis: isolation and characterization of a fast-nodulation and efficiently nitrogen fixing Rhizobium strain. Nitrogen Fix Tree Res Rep 10: 193–197 Schubert, Evans (1976) Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Nat Acad Sci USA 73: 1207–1211 Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224: 1095–1097 Streit W, Kosch K, Werner D (1992) Nodulation competitivenes of Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici strains measured by use of the glucuronidase (gus) gene fusion. Biol Fert Soils 14: 140–144 Wang R, Healey FP, Myers J (1971) Amperometric measurement of hydrogen evolution in Chlamydomonas. Plant Physiol 48: 108–110 Werner D, Stripf R (1978) Differentiation of Rhizobium japonicum. I. Enzymatic comparison of nitrogenase repressed and derepressed free living cells and of bacteroids. Z Naturforsch 33: 245–252 Werner D, Wilcockson J, Kalkowsky B (1975 a) Nitrogen fixing activity in Rhizobium japonicum separated from plant cell cultures. Z Naturforsch 30: 687–688 Werner D, Wilcockson J, Zimmermann E (1975 b) Absorption and selection of rhizobia by ion exchange papers. Arch Microbiol 105: 27–32 Zablotowicz RM, Russell SA, Evans HJ (1980) Effect of the hydrogenase system in Bradyrhizobium japonicum on the nitrogen fixation and growth of soybeans at different stages of development. Agron J 72: 555–559