Tree-ring samples of Picea schrenkiana (Fisch. et Mey) were studied along an altitudinal gradient in the central Tianshan Mountains, and ring-width chronologies were developed for three sites at different altitudes: low-forest border (1600–1700 m a.s.l.), interior forest (2100–2200 m a.s.l.), and upper treeline (2600–2700 m a.s.l.). Annual ring-width variations were similar among the three sites but variability was greatest at the low-forest border site. The statistical characters of the chronologies showed that mean sensitivity (MS) and standard deviation (SD) decreased with increasing elevation. In other words, the response of tree growth to environmental changes decreased with increasing altitude. To understand the differing response of trees at different elevations to the environmental changes, response function analysis was used to study the relationships between tree-ring widths and mean monthly temperature and total monthly precipitation from 1961 to 2000. The results showed that precipitation was the most important factor limiting tree radial growth in the arid central Tianshan Mountains, precipitation in August of the prior growth year played an important role on tree's radial growth across the entire altitudinal gradient even at the cold, high-elevation treeline site. It is expected that with increasing altitude air temperature decreased and precipitation increased, the importance of precipitation on tree growth decreased, and the response of tree growth to environmental changes decreased, too. This conclusion may be helpful to understand and research the relationship between climatic change and tree growth in arid and semiarid area.
Tapani Repo, Gang Zhang, Aija Ryyppö, Risto Rikala, Martti Vuorinen
The cessation of shoot elongation, diameter growth and needle elongation were compared with the initiation of frost hardening of the stems and needles in an 8-year-old provenance trial of Scots pine (Pinus sylvestris L.) established in central Finland. The saplings were of six different origins ranging from Estonia to northern Finland, forming a latitudinal gradient of ca. 10°N. The frost hardiness of the stems of current-year shoots was assessed by electrical impedance analysis and that of current-year needles by electrolyte leakage and visual scoring of damage. Artificial freezing tests were used in the assessments. The pattern of growth cessation (shoot and needle elongation, diameter growth) tended to follow the latitude of origin, i.e. growth ceased in the northernmost provenance first and in the southernmost one last. Both stems and needles of the northern provenances hardened earlier than the southern ones, but the differences in hardiness disappeared as hardening progressed. Growth cessation and initial hardening to –15°C were clearly correlated at the provenance level, indicating that growth must cease prior to hardening, and that earlier cessation of growth predicts earlier frost hardening of stems and needles. No differences in frost hardiness of stems were found at the provenance level at the end of the growing period in August. At that time, the frost hardiness of needles of the northernmost provenance was higher than that of other origins. Within the provenance, the stems were less hardy than the needles.