Cơ chế liên quan đến Hydrogen Peroxide và Glutathione trong việc dung nạp và tín hiệu căng thẳng thích nghi

Physiologia Plantarum - Tập 100 Số 2 - Trang 241-254 - 1997
Christine H. Foyer1, Humberto A. López-Delgado2, James F. Dat2, Ian M. Scott2
1IGER, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
2Institute of Biological Sciences, University of Wales Aberystwyth, Ceredigion SY23 3DA, UK

Tóm tắt

Các loài thực vật thích nghi với áp lực môi trường thông qua các phản ứng di truyền cụ thể. Các cơ chế phân tử liên quan đến truyền tín hiệu, dẫn đến sự thay đổi trong biểu hiện gen ngay từ giai đoạn đầu của phản ứng căng thẳng, vẫn chủ yếu chưa được biết đến. Tuy nhiên, rõ ràng rằng biểu hiện gen liên quan đến các phản ứng thích nghi rất nhạy cảm với trạng thái redox của tế bào. Trong số nhiều thành phần góp phần vào sự cân bằng redox của tế bào, hai yếu tố đã được chứng minh là rất quan trọng trong việc trung gian các phản ứng căng thẳng. Các phản ứng trao đổi Thiol/disulphide, đặc biệt là liên quan đến nguồn glutathione và sự tạo ra chất oxy hóa H2O2, là những thành phần trung tâm của quá trình truyền tín hiệu trong cả áp lực môi trường và sinh học. Những phân tử này là các kích hoạt đa chức năng, điều chỉnh chuyển hóa và biểu hiện gen. Cả hai đều có khả năng vượt qua màng sinh học và khuếch tán hoặc được vận chuyển một khoảng cách dài từ vị trí xuất phát. Glutathione và H2O2 có thể hoạt động đơn lẻ hoặc phối hợp với nhau, trong các hệ thống tín hiệu nội bào và hệ thống toàn thân, để đạt được sự thích nghi và dung nạp với các yếu tố căng thẳng sinh học và phi sinh học.

Từ khóa

#glutathione #hydrogen peroxide #stress tolerance #signal transduction #plant adaptation

Tài liệu tham khảo

10.1034/j.1399-3054.1995.930128.x

10.1104/pp.107.4.1049

10.1111/j.1399-3054.1989.tb05667.x

Alvarez M. E., 1997, Oxidative Stress and the Molecular Biology of Antioxidant Defences, 815

Aono M., 1995, Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase, Plant Cell Physiol, 36, 1687

10.1104/pp.84.4.1276

10.1104/pp.90.1.109

Arisi A.‐C. M. Noctor G. Foyer C. H.&Jouanin L.1997.Modulation of thiol contents in poplars (Populus tremula×P. alba) over‐expressing enzymes involved in glutathione synthesis.Planta(In press).

10.1016/0098-8472(91)90072-V

10.1111/j.1399-3054.1992.tb04728.x

10.1073/pnas.91.8.3299

10.1016/0968-0004(90)90179-F

Baier M.&Dietz K.‐J.1997.The plant 2‐cys peroxiredoxin BAS1 is a nuclear encoded chloroplast protein: Its expressional regulation phylogenetic origin and implications for its specific physiological function in plants.Plant J. (In press).

10.1146/annurev.py.33.090195.001503

10.1094/Phyto-81-1504

10.1006/pmpp.1993.1042

10.1111/j.1432-1033.1990.tb15522.x

10.1016/0014-5793(94)00850-7

Bergland T., 1994, Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide glutathione and oxidative stress, Plant Cell Tissue Organ Cult, 43, 187

10.1016/S0176-1617(11)80901-6

10.1016/S0176-1617(11)81983-8

10.1046/j.1365-313X.1995.08020235.x

10.3109/10715769509065273

10.1002/j.1460-2075.1989.tb03345.x

10.1146/annurev.pp.43.060192.000503

10.1016/0092-8674(92)90530-P

10.1046/j.1365-313X.1995.08020247.x

10.1007/BF00196246

10.1104/pp.79.2.415

10.1093/jxb/39.10.1449

Cakmak I.&Marschner H.1993.Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves.Plant Soil 155/156 127–130.

10.1016/0885-5765(87)90080-4

10.1104/pp.106.1.233

10.1126/science.8266079

10.1111/j.1399-3054.1994.tb03029.x

Collén J., 1996, Production, scavenging and toxicity of hydrogen peroxide in the green seaweed Ulva rigida, Environ. J. Physiol, 32, 265

10.1016/0306-4565(95)00026-7

Creissen G. P., 1994, I Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, 343

10.1126/science.7992056

10.1104/pp.104.3.945

10.1016/0020-711X(94)90103-1

10.1016/S0176-1617(96)80181-7

10.1073/pnas.92.10.4175

Doke N., 1994, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, 177

10.1016/1360-1385(96)10019-4

10.1073/pnas.85.18.6738

10.1073/pnas.92.24.11312

10.1016/0304-4165(95)00156-5

10.1007/BF00195343

10.1146/annurev.pp.33.060182.000445

10.1073/pnas.92.22.10237

10.1007/BF00195186

10.1126/science.6828852

Fisher A. B., 1988, Augusta, ME, USA, April, 34

Foyer C. H., 1997, The Molecular Biology of Free Radical Scavenging Systems, 587

10.1007/BF00386001

10.1016/S0176-1617(96)80271-9

10.1104/pp.97.3.863

10.1111/j.1365-3040.1994.tb00146.x

10.1111/j.1399-3054.1994.tb03042.x

10.1104/pp.109.3.1047

10.1042/bj3130841

10.1016/0885-5765(91)90023-B

10.1104/pp.110.3.759

10.1016/0031-9422(95)00381-G

10.1016/0168-9452(94)90130-9

10.1016/0923-2508(96)84014-9

10.2307/3869996

10.1073/pnas.87.16.6181

Grill E., 1990, Sulphur Nutrition and Sulphur Assimilation in Higher Plants, 89

10.1104/pp.102.1.45

10.1104/pp.84.1.3

10.1073/pnas.92.10.4150

Hammond‐Kosack K. E., 1996, Resistance gene‐dependent plant defense responses, Plant Cell, 8, 1773

10.2307/3870282

10.1073/pnas.90.7.3108

10.1021/bi00041a023

10.1099/13500872-142-10-2831

10.1104/pp.107.4.1067

10.1016/0168-9452(95)04262-8

10.1111/j.1469-8137.1996.tb01145.x

10.1111/j.1432-1033.1983.tb07264.x

10.1104/pp.111.4.1145

10.1016/S1360-1385(96)90005-9

10.1016/0014-5793(96)00560-1

10.3109/02713689209001792

10.1094/Phyto-78-488

10.1074/jbc.271.40.24539

Knight H., 1996, Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation, Plant Cell, 8, 489

10.1146/annurev.arplant.47.1.509

10.1111/j.1438-8677.1996.tb00864.x

10.1104/pp.111.2.349

Kunert K. J., 1993, Sulphur Nutrition and Assimilation in Higher Plants: Regulatory, Agricultural and Environmental Aspects, 139

10.1016/0003-9861(90)90110-K

10.1016/B978-0-12-461013-2.50009-5

Legendre L., 1993, Phospholipase‐C activation during elicitation of the oxidative burst in cultured plant cells, J. Biol. Chem, 268, 24559, 10.1016/S0021-9258(19)74503-7

10.1104/pp.108.4.1673

10.1016/0092-8674(94)90544-4

10.1016/S0022-5193(62)80032-0

10.1016/S0176-1617(96)80287-2

10.1002/bies.950180608

10.1007/978-94-015-8927-7_10

10.1016/0003-9861(86)90024-X

10.1111/j.1399-3054.1996.tb00469.x

10.1016/0968-0004(87)90081-8

10.1146/annurev.arplant.47.1.127

10.1271/bbb.58.906

10.1104/pp.102.4.1193

10.1104/pp.103.2.621

10.1094/MPMI-9-0349

10.1104/pp.110.4.1367

10.1104/pp.105.2.467

10.1034/j.1399-3054.1996.980219.x

10.1111/j.1365-3040.1990.tb01988.x

10.1016/0014-5793(95)01448-9

10.1104/pp.72.1.26

Miranda‐Vizuete A., 1994, Null thioredoxin and glutaredoxin Escherichia coli K‐12 mutants have no enhanced sensitivity to mutagens due to a new GSH‐dependent hydrogen donor and high increases in ribonucleotide reductase activity, J. Biol. Chem, 269, 16631, 10.1016/S0021-9258(19)89436-X

10.1016/0966-842X(96)81499-5

10.1007/BF00248605

Mittler R., 1992, Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase, J. Biol. Chem, 267, 21802, 10.1016/S0021-9258(19)36683-9

10.1016/0014-5793(95)00690-B

10.1111/j.1399-3054.1990.tb02088.x

Nakagawara S., 1993, Enhanced formation of a constitutive sesquiterpenoid in cultured cells of a liverwort, Calypogeia granulata Inoue during elicitation: Effects of a vanadata, Plant Cell Physiol, 34, 421

10.1046/j.1365-313X.1995.08020227.x

10.1104/pp.112.3.1071

10.1111/j.1399-3054.1997.tb04781.x

10.1007/BF00620053

10.1104/pp.97.3.1265

10.1104/pp.65.2.407

10.1111/j.1399-3054.1993.tb00147.x

Pauls K. P., 1982, Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage, Plant Cell Physiol, 23, 821

Pena‐Cortez H., 1992, Factors affecting gene expression of patatin and proteinase‐inhibitor‐II gene families in detached potato leaves: Implications for their co‐expression in developing tubers, Planta, 186, 495

10.2307/3869675

10.1104/pp.108.4.1597

10.2307/3869827

10.1073/pnas.84.9.2723

10.1111/j.1399-3054.1993.tb01393.x

10.1016/0269-7491(93)90167-M

10.1104/pp.109.2.421

Reglinski J., 1988, Cellular response to oxidative stress at sulfhydryl group receptor sites on the erythrocyte membrane, J. Biol. Chem, 263, 12360, 10.1016/S0021-9258(18)37763-9

10.1017/CBO9780511721809.012

Rennenberg H., 1990, Sulphur Nutrition and Sulphur Assimilation in Higher Plants, 53

10.1104/pp.103.3.877

10.1104/pp.95.3.669

Ricard B., 1994, Plant metabolism under hypoxia and anoxia, Plant Physiol. Biochem, 32, 1

10.1093/jxb/46.5.513

10.2307/3869876

10.1111/j.1399-3054.1988.tb09182.x

10.1073/pnas.92.10.4138

10.1007/BF00196879

10.1093/jxb/43.9.1243

10.1034/j.1399-3054.1995.930105.x

10.1073/pnas.93.10.5099

10.1007/BF00014596

10.1007/BF01042181

Skriver K., 1990, Gene expression in response to abscisic acid and osmotic stress, Plant Cell, 2, 503

10.1111/j.1469-8137.1993.tb03863.x

10.1104/pp.79.4.1044

10.1007/BF00393412

Strid A., 1993, Increased expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet‐B radiation, Plant Cell Physiol, 34, 949

10.1007/BF00014600

10.1046/j.1365-313X.1995.07010141.x

10.1016/0885-5765(91)90020-I

10.1073/pnas.92.10.4158

Tsang E. W. T., 1991, Differential regulation of superoxide dismutases in plants exposed to environmental stress, Plant Cell, 3, 783

10.1104/pp.97.4.1414

10.1038/nbt0294-165

10.1104/pp.99.3.1208

10.1146/annurev.pp.42.060191.003051

10.1016/0014-5793(95)00688-6

10.1111/j.1399-3054.1996.tb00465.x

10.2307/3870053

10.1007/BF02277422

10.1111/j.1469-8137.1976.tb01459.x

10.1104/pp.87.1.206

10.1016/0304-4165(92)90026-Q

10.1104/pp.83.2.278

10.1016/0014-5793(96)00272-4

10.1105/tpc.7.9.1357

10.1007/BF00201815

10.1104/pp.101.1.209

10.1016/0031-9422(92)80329-D

10.1146/annurev.bi.54.070185.001513