Hydrogen Isotope Exchange Reactions in an Atmospheric Pressure Discharge Utilizing Water as Carrier Gas

Plasma Chemistry and Plasma Processing - Tập 24 - Trang 537-554 - 2004
I. G. Koo1, W. M. Lee1
1Department of Molecular Science and Technology, Ajou University, Suwon, Korea

Tóm tắt

Allowing water/hydrogen or water/hydrogen/He gas mixture to flow through micro- hollow type of electrodes and applying 60 Hz AC power between the electrodes made it possible to sustain large area and atmospheric pressure discharge. The electrode assembly was constructed by sandwiching a dielectric spacer with two thin metal sheets and boring an array of micro holes through them. Another variation of the assembly was prepared by stacking thin metallic sheets so that the stack functions as an electrode through which the gas mixture flows for generating dielectric barrier discharge. A large volume of the gas mixture, while producing plasma, underwent instantaneous hydrogen isotope exchange reactions between H2O and D2O or between D2O and H2 gas molecules. The efficiency of the atmospheric pressure discharge was assessed by measuring the extent of the exchange reactions at a given flow rate of the gas mixture.

Tài liệu tham khảo

A. R. Hochstin, Kinetic Processes in Gases and Plasma, Academic Press 1969. B. M. Penetrante S. E. Schultheis (1993) Non-Thermal Plasma Techniques for Pollution Control Springer-Verlag Berlin B. D. Blaustein, Chemical Reactions in Electrical Discharge, Adv. Chem. Ser. 80, ACS, 1967. J. Lawton F. J. Weinberg (1969) Electrical Aspects of Combustion Clarendon Press Oxford J. R. Hollahan A. T. Bell (1974) Techniques and Applications of Plasma chemistry John Wiley & Sons New York H. J. Kim Y. D. Park W. M. Lee (2000) Plasma Chem. Plasma Process 20 259 J. P. Butler, J. H. Rolston, and W. H. Stevens, in Proceeding of the Symposium on Separation of Hydrogen Isotopes, (H. K. Rae, ed.), ACS Symp. – Ser. 68, 93 (1978). J. H. Rolston J. Hartog Particleden J. P. Butler (1976) J. Phys. Chem. 80 1064 H. Yang K. S. Shin W. Gardiner (1993) Chem. Phys. Lett. 207 69 K. H. Schoenbach R. Verhappen T. Tessnow F. E. Peterkin W. W. Byszewski (1996) Appl. Phys. Lett. 68 13 K. H. Schoenbach A. El-Habachi M. M. Moselhy W. Shi M. Ciocca (l997) Plasma Sources Sci. Technol. 6 468 Y. Guo F. C. Hong (2003) Appl. Phys. Lett. 82 337 Z. Yu K. Hoshimiya J. D. Williams S. F. Polvinen G. J. Collins (2003) Appl. Phys. Lett. 83 854 M. Miclea K. Kunze J. Franzke K. Niemax (2002) Spectrochim. Acta B57 1585 S. Kanazawa M. Kogoma T. Moriwaki S. Okazaki (1988) J. Phys. D: Appl. Phys 21 838 S. Pkazaki M. Kogoma M. Uehara Y. Kimura (1993) J. Phys. D: Appl. Phys 26 889 M. Laroussi I. Alexeff J. P. Richardson F. F. Dyer (2002) IEEE Trans. Plasma Sci. 30 158 B. Sun M. Sato J. S. Clements (1997) J. Electrostat. 39 189 B. Benstaali P. Boubert B. G. Cheron A. Addou J. L. Brisset (2002) Plasma Chem. Plasma Process. 22 553 A. Ricard Ph. D\’ecomps F. Massines (1999) Surface Coat. Technol. 112 1 C. O. Laux T. G. Spence C. H. Kruger R. N. Zare (2003) Plasma Sources Sci. Technol. 12 125 M. A. Malik A. Ghaffar S. A. Malik (2001) Plasma Sources Sci. Technol. 10 82 F. P. Del Greco F. Kaufman (1962) Disc. Faraday Soc. 33 128 F. Kaufman, Chemical Reactions in Electrical Discharge, Adv. Chem. Ser. 80, ACS, (1967), p. 29. V. S. Gathen H. F. Dobele (1996) Plasma Chem. Plasma Process. 16 461 R. Schinke V. Engel V. Staemmler (1985) J. Chem. Phys. 83 4522 R. D. Levine R. B. Bernstein (1987) Molecular Reaction Dynamics and Chemical Reactivity Oxford University Press Oxford 14