Ổn định Thủy động lực mà không cần trị riêng

American Association for the Advancement of Science (AAAS) - Tập 261 Số 5121 - Trang 578-584 - 1993
Lloyd N. Trefethen1, Anne Trefethen2, K. F. Schertz3, Tobin A. Driscoll4
1Department of Computer Science, Cornell University, Ithaca, NY 14853 ([email protected])
2Cornell Theory Center, Cornell University, Ithaca, NY 14853
3Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
4Center for Applied Mathematics, Cornell University, Ithaca, NY 14853

Tóm tắt

Dòng chảy lưu chất mịn ở tốc độ thấp trở nên không ổn định và sau đó trở thành hỗn loạn ở các tốc độ cao hơn. Hiện tượng này đã được điều tra truyền thống thông qua việc tuyến tính các phương trình dòng chảy và kiểm tra các giá trị riêng không ổn định của bài toán tuyến tính hóa, nhưng kết quả của những nghiên cứu như vậy không phù hợp trong nhiều trường hợp thí nghiệm. Dù vậy, các hiệu ứng tuyến tính đóng vai trò trung tâm trong sự không ổn định thủy động lực. Một sự hòa giải giữa những kết quả này với phân tích truyền thống được trình bày dựa trên "giả phổ" của bài toán tuyến tính hóa, đề xuất rằng những nhiễu loạn nhỏ đối với dòng chảy mượt mà có thể được khuếch đại bởi các yếu tố có cường độ 10^5 thông qua một cơ chế tuyến tính ngay cả khi tất cả các chế độ riêng suy giảm đơn điệu. Các phương pháp được đề xuất ở đây cũng áp dụng cho các vấn đề khác trong khoa học toán liên quan đến các hàm riêng không trực giao.

Từ khóa


Tài liệu tham khảo

ASAI, M, ORIGIN OF THE PEAK-VALLEY WAVE STRUCTURE LEADING TO WALL TURBULENCE, JOURNAL OF FLUID MECHANICS 208: 1 (1989).

BAYLY, B. J., ANNUAL REVIEW OF FLUID MECHANICS 20: 359 (1988).

BENNEY, D.J., A NEW MECHANISM FOR LINEAR AND NON-LINEAR HYDRODYNAMIC INSTABILITY, STUDIES IN APPLIED MATHEMATICS 64: 185 (1981).

BERNAL, L.P., STREAMWISE VORTEX STRUCTURE IN PLANE MIXING LAYERS, JOURNAL OF FLUID MECHANICS 170: 499 (1986).

BREIDENTHAL, R, STRUCTURE IN TURBULENT MIXING LAYERS AND WAKES USING A CHEMICAL-REACTION, JOURNAL OF FLUID MECHANICS 109: 1 (1981).

BREUER, K.S., THE EVOLUTION OF A LOCALIZED DISTURBANCE IN A LAMINAR BOUNDARY-LAYER .1. WEAK DISTURBANCES, JOURNAL OF FLUID MECHANICS 220: 569 (1990).

Bun, Y., Journal of Fluid Mechanics 273: 31 (1994).

BUSSE, F. H., ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK 20: 1 (1969).

BUTLER, K.M., 3-DIMENSIONAL OPTIMAL PERTURBATIONS IN VISCOUS SHEAR-FLOW, PHYSICS OF FLUIDS A-FLUID DYNAMICS 4: 1637 (1992).

BUTLER, K.M., OPTIMAL PERTURBATIONS AND STREAK SPACING IN WALL-BOUNDED TURBULENT SHEAR-FLOW, PHYSICS OF FLUIDS A-FLUID DYNAMICS 5: 774 (1993).

CARLSON, D.R., A FLOW-VISUALIZATION STUDY OF TRANSITION IN PLANE POISEUILLE FLOW, JOURNAL OF FLUID MECHANICS 121: 487 (1982).

CASE, K.M., J FLUID MECH 10: 420 (1960).

CASE, K. M., PHYSICS OF FLUIDS 3: 143 (1960).

CRAIK, A. D. D., PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES 406: 13 (1986).

DAVIES, S. J., PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A 119: 92 (1928).

Drazin P. G. Hydrodynamic Stability (1981).

ELLINGSEN, T, STABILITY OF LINEAR FLOW, PHYSICS OF FLUIDS 18: 487 (1975).

FARRELL, B.F., OPTIMAL EXCITATION OF BAROCLINIC WAVES, JOURNAL OF THE ATMOSPHERIC SCIENCES 46: 1193 (1989).

FARRELL, B.F., OPTIMAL EXCITATION OF PERTURBATIONS IN VISCOUS SHEAR-FLOW, PHYSICS OF FLUIDS 31: 2093 (1988).

FARRELL, B.F., OPTIMAL EXCITATION OF 3-DIMENSIONAL PERTURBATIONS IN VISCOUS CONSTANT SHEAR-FLOW, PHYSICS OF FLUIDS A-FLUID DYNAMICS 5: 1390 (1993).

Golub G. H. Matrix Computations (1989).

GUSTAVSSON, L.H., ENERGY GROWTH OF 3-DIMENSIONAL DISTURBANCES IN PLANE POISEUILLE FLOW, JOURNAL OF FLUID MECHANICS 224: 241 (1991).

Henningson, D. S., Advances in Turbulence: 279 (1991).

HENNINGSON, D.S., A MECHANISM FOR BYPASS TRANSITION FROM LOCALIZED DISTURBANCES IN WALL-BOUNDED SHEAR FLOWS, JOURNAL OF FLUID MECHANICS 250: 169 (1993).

HIGHAM, D.J., STIFFNESS OF ODES, BIT 33: 285 (1993).

Horn R. A. Topics in Matrix Analysis (1991).

HULTGREN, L.S., ALGEBRAIC GROWTH OF DISTURBANCES IN A LAMINAR BOUNDARY-LAYER, PHYSICS OF FLUIDS 24: 1000 (1981).

Joseph D. D. Stability of Fluid Motions I (1975).

Kato T. Perturbation Theory for Linear Operators (1976).

KERNER, W, LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS, JOURNAL OF COMPUTATIONAL PHYSICS 85: 1 (1989).

KLEBANOFF, P.S., THE 3-DIMENSIONAL NATURE OF BOUNDARY-LAYER INSTABILITY, JOURNAL OF FLUID MECHANICS 12: 1 (1962).

KLINGMANN, BGB, ON TRANSITION DUE TO 3-DIMENSIONAL DISTURBANCES IN PLANE POISEUILLE FLOW, JOURNAL OF FLUID MECHANICS 240: 167 (1992).

Kreiss G. Royal Institute of Technology Department of Numerical Analysis and Computing Science Technical Report TRITA-NA-9307 (1993).

KREISS, H.O., BIT 2: 153 (1962).

LANDAHL, M.T., A NOTE ON AN ALGEBRAIC INSTABILITY OF INVISCID PARALLEL SHEAR FLOWS, JOURNAL OF FLUID MECHANICS 98: 243 (1980).

LANDAHL, M.T., WAVE BREAKDOWN AND TURBULENCE, SIAM JOURNAL ON APPLIED MATHEMATICS 28: 735 (1975).

LANDAU, H, LOSS IN UNSTABLE RESONATORS, JOURNAL OF THE OPTICAL SOCIETY OF AMERICA 66: 525 (1976).

LASHERAS, J.C., 3-DIMENSIONAL INSTABILITY OF A PLANE FREE SHEAR-LAYER - AN EXPERIMENTAL-STUDY OF THE FORMATION AND EVOLUTION OF STREAMWISE VORTICES, JOURNAL OF FLUID MECHANICS 189: 53 (1988).

LEE, M.J., STRUCTURE OF TURBULENCE AT HIGH SHEAR RATE, JOURNAL OF FLUID MECHANICS 216: 561 (1990).

Lumley, L., Developments in Mechanics 6: 63 (1971).

LUNDBLADH, A, DIRECT SIMULATION OF TURBULENT SPOTS IN PLANE COUETTE-FLOW, JOURNAL OF FLUID MECHANICS 229: 499 (1991).

Morkovin, M. V., Viscous Drag Reduction: 1 (1969).

NACHTIGAL, N.M., HOW FAST ARE NONSYMMETRIC MATRIX ITERATIONS, SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 13: 778 (1992).

NACHTIGAL, N.M., A HYBRID GMRES ALGORITHM FOR NONSYMMETRIC LINEAR-SYSTEMS, SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 13: 796 (1992).

ORR, W. M., PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A 27: 69 (1907).

ORR, W. M., PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A 27: 9 (1907).

ORSZAG, S.A., ACCURATE SOLUTION OF ORR-SOMMERFELD STABILITY EQUATION, JOURNAL OF FLUID MECHANICS 50: 689 (1971).

ORSZAG, S.A., SECONDARY INSTABILITY OF WALL-BOUNDED SHEAR FLOWS, JOURNAL OF FLUID MECHANICS 128: 347 (1983).

PATEL, V.C., SOME OBSERVATIONS ON SKIN FRICTION AND VELOCITY PROFILES IN FULLY DEVELOPED PIPE AND CHANNEL FLOWS, JOURNAL OF FLUID MECHANICS 38: 181 (1969).

Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations (1983).

REDDY, S.C., ENERGY GROWTH IN VISCOUS CHANNEL FLOWS, JOURNAL OF FLUID MECHANICS 252: 209 (1993).

REDDY, S. C., NUMERISCHE MATHEMATIK 62: 235 (1992).

REDDY, S.C., PSEUDOSPECTRA OF THE ORR-SOMMERFELD OPERATOR, SIAM JOURNAL ON APPLIED MATHEMATICS 53: 15 (1993).

Richtmyer R. D. Difference Methods for Initial-Value Problems (1967).

Robinson S. K. NASA Technical Memorandum TM-103859 (1991).

ROMANOV, V. A., FUNCTIONAL ANALYSIS AND ITS APPLICATIONS 7: 137 (1973).

ROSEN, G, GENERAL SOLUTION FOR PERTURBED PLANE COUETTE FLOW, PHYSICS OF FLUIDS 14: 2767 (1971).

SERRIN, J, ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS 3: 1 (1959).

SQUIRE, H.B., On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls, PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER 142: 621 (1933).

THOMSON, W, PHILOS MAG 24: 188 (1887).

TILLMARK, N, EXPERIMENTS ON TRANSITION IN PLANE COUETTE-FLOW, JOURNAL OF FLUID MECHANICS 235: 89 (1992).

Trefethen, L. N., Numerical Analysis 1991: 234 (1992).

Trefethen L. N. Cornell University Department of Computer Science Technical Report TR 92-1291 (1992).

Trefethen L. N. Cornell Theory Center Technical Report 92TR115 (1992).