Hybrid modeling for quality by design and PAT‐benefits and challenges of applications in biopharmaceutical industry

Biotechnology Journal - Tập 9 Số 6 - Trang 719-726 - 2014
Moritz von Stosch1, Steven Davy2, Kjell François3, Vytautas Galvanauskas4, Jan‐Martijn Hamelink5, A. Luebbert6, Martin J. Mayer7, Rui Oliveira8,1, Ronan O’Kennedy9, P.D. Rice5, Jarka Glassey10
1REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
2NNE Pharmaplan, Gentofte, Denmark
3Siemens NV, Huizingen, Belgium
4Process Control Department, Kaunas University of Technology, Kaunas, Lithuania
5GlaxoSmithKline Vaccines, Laval, Canada
6Center for Bioprocess Engineering, Institute of Biochemistry and Biotechnology, University Halle-Wittenberg, Halle, Germany
7Evon GmbH, Gleisdorf, Austria
8IBET/ITQB, Oeiras and Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
9FUJIFILM Diosynth Biotechnologies, Billingham, UK
10CEAM, Newcastle University, Newcastle upon Tyne, UK

Tóm tắt

AbstractThis report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi‐parametric model, for instance the integration of fundamental and data‐driven models. A brief description of the current state‐of‐the‐art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry.

Từ khóa


Tài liệu tham khảo

10.1016/j.compchemeng.2013.08.008

10.1002/aic.690400806

10.1002/aic.690381003

10.1016/0168-1656(94)90189-9

United States Federal Food and Drug Administration (USA) Guidance for Industry Process Analytical Technology FDA 2004.

European Medicines Agency EMA‐FDA pilot program for parallel assessment of Quality by Design applications. Document EMA/172347/2011 2011.

International conference on Harmonization (ICH) Document ICH Q8–Q10 2005–2010. Available at www.ich.org.

10.1007/s00449-007-0161-9

10.1002/btpr.706

10.1002/jctb.1678

10.1007/s00449-004-0385-x

10.1016/j.jprocont.2012.05.004

10.1016/j.compchemeng.2006.05.018

10.1016/j.jbiotec.2005.04.024

10.1007/s00449-013-1029-9

10.1007/s12247-010-9090-2

Mogk G. Mrziglod T. Schuppert A. Application of hybrid models in chemical industry. in: Grievink J. van Schijndel J. (Eds.) European Symposium on Computer Aided Process Engineering‐12 Vol. 10 Elsevier 2002 pp. 931–936.

10.1016/j.compchemeng.2012.05.012

10.1002/cjce.5450850616

Ibrehem A. S., 2011, Hybrid mathematical model and advanced control of a fluidized bed using a model‐predictive controller, J. Petrol. Gas Eng., 2, 25

10.1016/j.powtec.2012.03.001

10.1016/S0255-2701(02)00206-4

10.1039/c0ay00257g

United States Federal Food and Drug Administration (USA) Process Validation: General Principles and Practises FDA 2011.

United States Federal Food and Drug Administration (USA) A Risk Based Approach FDA 2002.

10.1038/nrd4035

10.3390/ph5121393

Gal R. Biosimilars: Reviewing US Law and US/EU Patents; Bottom Up Model Suggests 12 Products and $7–$8B Market by 2020. Bernstein Research. 26 May 2011.

What You Need to Know About Biosimilar Medicinal Products. Consensus Information Paper European Commission 2013.

Gao Y., 2010, Application of agent‐based system for bioprocess description and process improvement., Proc Biochem., 26, 706

Preusting H., 1996, The use of hybrid modeling for optimization of the penicillin fermentation process., Chimia, 50, 416, 10.2533/chimia.1996.416

10.1021/bk-1995-0613.ch014

10.1002/biot.200800333

10.1016/j.ces.2010.05.003

10.1002/biot.201000356

10.1016/j.bej.2007.09.003

10.1021/bp0502328

Eriksson L. Johansson E. Kettaneh‐Wold N. Trygg J. et al. Model Derivation Interpretation and Validation in Multi‐ and Megavariate Data Analysis Part II Advanced Applications and Method Extensions Umetrics AB Sweden 2006.

Patnaik P. R., 2000, Hybrid neural simulation of a fed‐batch bioreactor for a non‐ideal recombinant fermentation., Bioproc. Biosyst. Eng., 24, 151