Hybrid model for exhaust systems in vehicle thermal management simulations
Tóm tắt
Using Vehicle Thermal Management (VTM) simulations to predict the thermal load experienced by components is a popular method within the automotive industry. The VTM simulation approach is fast becoming equivalent to conducting thermal load tests with prototypes for vehicles powered by internal combustion engines. This is especially true in the early development phase of the vehicle. The accuracy of the VTM simulations plays a pivotal role at them being accepted as an eventual replacement for physical testing. The correct prediction of thermal loads in VTM simulations depends on a multitude of different parameters, but the modelling of the exhaust system plays a central role in it. This is because the exhaust gas, and with it the exhaust system, is the primary source of heat in a vehicle powered by an internal combustion engine. The developed approach not only needs to be accurate but also modular enough to allow for different exhaust configurations to be tested. It also needs to be capable of integration into any VTM simulation workflow while maintaining an industrially acceptable turnaround time. This paper explores a new methodology to achieve these requirements. A 1D/3D hybrid approach to exhaust system modelling is presented. In this, the components that have an enthalpy change of the exhaust gas, such as the turbocharger, have been modelled as 1D and simple components such as pipes have been modelled in 3D. This has the advantage of combining the speed of 1D simulations with the spatial accuracy of 3D simulations. The method uses a unique three-code co-simulation technique for full vehicle VTM simulations. The coupling is between a 3D CFD software, a 1D simulation tool, and a Finite Element based thermal solver. The methodology was validated against experimental data for multiple loadcases. The results show good agreement with experiment within acceptable tolerances.
Tài liệu tham khảo
Ahmed, S., Full, M., Rottengruber, H.: A new approach to model the fan in vehicle thermal management simulations. In: SAE Technical Paper Series. SAE International (2019). https://doi.org/10.4271/2019-01-5016
Balakotaiah, V., Gupta, N., West, D.H.: A simplified model for analyzing catalytic reactions in short monoliths. Chem. Eng. Sci. 55(22), 5367–5383 (2000). https://doi.org/10.1016/S0009-2509(00)00164-0
Bannister, C.D., Brace, C.J., Lock, G.D., Taylor, J., Brooks, T., Fraser, N.: Experimental characterisation of heat transfer in exhaust pipe sections. SAE Int. J. Mater. Manufact. 1(1), 136–144 (2009). https://doi.org/10.4271/2008-01-0391
Büchner, S., Santos Lardies, S., Degen, A., Donnerstag, A., Held, W.: A modular numerical simulation tool predicting catalytic converter light-off by improved modeling of thermal management and conversion characteristics. In: SAE Technical Paper Series. SAE International (2001). https://doi.org/10.4271/2001-01-0940
El-Sharkawy, A., Sami, A., Hekal, A.E.R., Arora, D., Khandaker, M.: Transient modelling of vehicle exhaust surface temperature. SAE Int. J. Mater. Manufact. 9(2), 321–329 (2016). https://doi.org/10.4271/2016-01-0280
Enriquez-Geppert, J.: Numerische und experimentelle Analyse der Wärmeübertragung einer Abgasanlage im Gesamtfahrzeug. Phd thesis, Universität Stuttgart (2015). https://doi.org/10.18419/OPUS-8742
Enriquez-Geppert, J., Wiedemann, J., Reister, H., Binner, T.: Numerical simulation of exhaust system temperatures taking into account thermal interactions with the vehicle environment. In: Vehicle thermal management systems proceedings, pp. 561–570. Woodhead Pub, Cambridge (2011). https://doi.org/10.1533/9780857095053.7.561
Eroglu, S., Duman, I., Ergenc, A., Yanarocak, R.: Thermal analysis of heavy duty engine exhaust manifold using cfd. In: SAE Technical Paper Series. SAE International (2016). https://doi.org/10.4271/2016-01-0648
Fortunato, F., Caprio, M., Oliva, P., D’Aniello, G., Pantaleone, P., Andreozzi, A., Manca, O.: Numerical and experimental investigation of the thermal behavior of a complete exhaust system. In: SAE Technical Paper Series. SAE International (2007). https://doi.org/10.4271/2007-01-1094
Gamma Technologies LLC: GT-Suite Flow Theory Manual, Version (2018)
Groppi, G., Belloli, A., Tronconi, E., Forzatti, P.: A comparison of lumped and distributed models of monolith catalytic combustors. Chem. Eng. Sci. 50(17), 2705–2715 (1995). https://doi.org/10.1016/0009-2509(95)00099-Q
Groppi, G., Tronconi, E.: Theoretical analysis of mass and heat transfer in monolith catalysts with triangular channels. Chem. Eng. Sci. 52(20), 3521–3526 (1997). https://doi.org/10.1016/S0009-2509(97)00153-X
Gupta, N., Balakotaiah, V.: Heat and mass transfer coefficients in catalytic monoliths. Chem. Eng. Sci. 56(16), 4771–4786 (2001). https://doi.org/10.1016/S0009-2509(01)00134-8
Haehndel, K.: Development of exhaust surface temperature models through the numerical prediction of 1d/3d cfd coupling. Bachelors thesis, Royal Melbourne Institute of Technology (2010)
Haehndel, K.: An innovative approach to dynamic driving simulations for vehicle thermal management processes. Phd thesis, Royal Melbourne Institute of Technology (2014)
Haehndel, K., Frank, T., Christel, F., Abanteriba, S.: An innovative approach to race track simulations for vehicle thermal management. SAE Int. J. Passenger Cars Mech. Syst. 6(3), 1564–1576 (2013). https://doi.org/10.4271/2013-01-9121
Haehndel, K., Frank, T., Christel, F.M., Spengler, C., Suck, G., Abanteriba, S.: The development of exhaust surface temperature models for 3d cfd vehicle thermal management simulations part 1 - general exhaust configurations. SAE Int. J. Passenger Cars Mech. Syst. 6(2), 847–858 (2013). https://doi.org/10.4271/2013-01-0879
Haehndel, K., Jefferies, A., Schlipf, M., Frank, T., Christel, F., Abanteriba, S.: The development of exhaust surface temperature models for 3d cfd vehicle thermal management simulations part 2 - exhaust acoustic silencer configurations. In: SAE Technical Paper Series. SAE International (2014). https://doi.org/10.4271/2014-01-0646
Hayes, R.E., Kolaczkowski, S.T.: Mass and heat transfer effects in catalytic monolith reactors. Chem. Eng. Sci. 49(21), 3587–3599 (1994). https://doi.org/10.1016/0009-2509(94)00164-2
Hayes, R.E., Kolaczkowski, S.T.: A study of nusselt and sherwood numbers in a monolith reactor. Catal. Today 47(1–4), 295–303 (1999). https://doi.org/10.1016/S0920-5861(98)00310-1
Heinemann, J.: Entwicklung von Teilmodellen zur Berechnung von Oberflächentemperaturen von Abgasanlagenkomponenten. Hochschule für Technik und Wirtschaft, Berlin (2010)
Kandylas, I.P., Stamatelos, A.M.: Engine exhaust system design based on heat transfer computation. Energy Convers. Manage. 40(10), 1057–1072 (1999). https://doi.org/10.1016/S0196-8904(99)00008-4
Kolaczkowski, S.T.: Modelling catalytic combustion in monolith reactors—challenges faced. Catal. Today 47(1–4), 209–218 (1999). https://doi.org/10.1016/S0920-5861(98)00301-0
Makinde, O.D.: Modelling the thermal operation in a catalytic converter of an automobile’s exhaust. In: Konaté, D. (ed.) Mathematical modeling, simulation, visualization and e-learning, pp. 51–61. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-74339-2_4
Martinez Laurent, J.C.: Transient thermal simulation process over a diesel exhaust system during regeneration. In: SAE Technical Paper Series. SAE International (2011). https://doi.org/10.4271/2011-01-0658
Meisner, S., Sorenson, S.C.: Computer simulation of intake and exhaust manifold flow and heat transfer. In: SAE Technical Paper Series. SAE International (1986). https://doi.org/10.4271/860242
Millo, F., Gallone, A., Mallamo, A.: Experimental and computational analysis of a tuned exhaust system for a small two-stroke engine. In: SAE Technical Paper Series. SAE International (1999). https://doi.org/10.4271/1999-01-3329
Moshammer, T.: Simulation of radiation effects in the presence of the exhaust system. In: SAE Technical Paper Series. SAE International (2005). https://doi.org/10.4271/2005-01-2060
Onorati, A., Montenegro, G., D’Errico, G., Piscaglia, F.: Integrated 1d-3d fluid dynamic simulation of a turbocharged diesel engine with complete intake and exhaust systems. In: SAE Technical Paper Series. SAE International (2010). https://doi.org/10.4271/2010-01-1194
Peters, B.J., Wanker, R.J., Münzer, A., Wurzenberger, J.C.: Integrated 1d to 3d simulation workflow of exhaust aftertreatment devices. In: SAE Technical Paper Series. SAE International (2004). https://doi.org/10.4271/2004-01-1132
Schlipf, M.: Untersuchung der Durchstroemung von Nachschalldaempfern zur Erstellung eines 1d-Modelles fuer die Berechnung der Oberflaechentemperatur. Universität Stuttgart, Stuttgart (2011)
Sinkule, J., Hlaváček, V.: Heat and mass transfer in monolithic honeycomb catalysts–iii. Chem. Eng. Sci. 33(7), 839–845 (1978). https://doi.org/10.1016/0009-2509(78)85173-2
Tweddell, D., Sloss, C., Werner, T.: An advanced cfd simulation strategy for exhaust manifolds with close-coupled catalytic converters. In: SAE Technical Paper Series. SAE International (2005). https://doi.org/10.4271/2005-01-1922
de Vos, S., Haehndel, K., Frank, T., Christel, F., Abanteriba, S.: The development of turbine volute surface temperature models for 3d cfd vehicle thermal management simulations: Part 3: Exhaust radial turbine volute systems. SAE Int. J. Passenger Cars Mech. Syst. 7(2), 714–727 (2014). https://doi.org/10.4271/2014-01-0648
Votruba, J., Mikuš, O., Nguen, K., Hlaváček, V., Skřivánek, J.: Heat and mass transfer in honeycomb catalysts–ii. Chem. Eng. Sci. 30(2), 201–206 (1975). https://doi.org/10.1016/0009-2509(75)80006-6
Votruba, J., Sinkule, J., Hlaváček, V., Skřivánek, J.: Heat and mass transfer in monolithic honeycomb catalysts–i. Chem. Eng. Sci. 30(1), 117–123 (1975). https://doi.org/10.1016/0009-2509(75)85122-0
Yoshizawa, K., Mori, K., Kimura, S.: Numerical analysis of the exhaust gas flow and heat transfer in a close-coupled catalytic converter system during warm-up. In: SAE Technical Paper Series. SAE International (2001). https://doi.org/10.4271/2001-01-0943
Zhang, X., Romzek, M.: Computational fluid dynamics (cfd) applications in vehicle exhaust system. In: SAE Technical Paper Series. SAE International (2008). https://doi.org/10.4271/2008-01-0612
Zhang, Y., Phaneuf, K., Hanson, R., Showalter, N.: Computer modeling on exhaust system heat transfer. In: SAE Technical Paper Series. SAE International (1992). https://doi.org/10.4271/920262