Hybrid functionals based on a screened Coulomb potential

Journal of Chemical Physics - Tập 118 Số 18 - Trang 8207-8215 - 2003
Jochen Heyd1, Gustavo E. Scuseria1, Matthias Ernzerhof2
1Department of Chemistry, Rice University, Houston, Texas 77005-1892
2Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada

Tóm tắt

Hybrid density functionals are very successful in describing a wide range of molecular properties accurately. In large molecules and solids, however, calculating the exact (Hartree–Fock) exchange is computationally expensive, especially for systems with metallic characteristics. In the present work, we develop a new hybrid density functional based on a screened Coulomb potential for the exchange interaction which circumvents this bottleneck. The results obtained for structural and thermodynamic properties of molecules are comparable in quality to the most widely used hybrid functionals. In addition, we present results of periodic boundary condition calculations for both semiconducting and metallic single wall carbon nanotubes. Using a screened Coulomb potential for Hartree–Fock exchange enables fast and accurate hybrid calculations, even of usually difficult metallic systems. The high accuracy of the new screened Coulomb potential hybrid, combined with its computational advantages, makes it widely applicable to large molecules and periodic systems.

Từ khóa


Tài liệu tham khảo

1985, Phys. Rev. Lett., 55, 1665, 10.1103/PhysRevLett.55.1665

1993, J. Chem. Phys., 98, 5648, 10.1063/1.464913

1980, Int. J. Quantum Chem., 17, 501, 10.1002/qua.560170311

2000, Phys. Rev. B, 61, 16440, 10.1103/PhysRevB.61.16440

1994, Chem. Phys. Lett., 230, 8, 10.1016/0009-2614(94)01128-1

1996, J. Chem. Phys., 105, 8969, 10.1063/1.472627

1999, J. Phys. Chem., 103, 4782, 10.1021/jp990629s

1987, J. Comput. Phys., 73, 325, 10.1016/0021-9991(87)90140-9

1995, Chem. Phys. Lett., 238, 173, 10.1016/0009-2614(95)00365-7

1996, Science, 271, 51, 10.1126/science.271.5245.51

1998, Chem. Phys. Lett., 289, 611, 10.1016/S0009-2614(98)00468-0

2000, Phys. Rev. B, 61, 5141, 10.1103/PhysRevB.61.5141

1995, Int. J. Quantum Chem., 56, 229, 10.1002/qua.560560407

1996, J. Chem. Phys., 105, 2726, 10.1063/1.472135

1998, J. Chem. Phys., 109, 1663, 10.1063/1.476741

1996, Chem. Phys. Lett., 254, 329, 10.1016/0009-2614(96)00280-1

1996, Mol. Phys., 88, 1005, 10.1080/00268979609484488

2001, J. Chem. Phys., 115, 3540, 10.1063/1.1383587

1996, J. Chem. Phys., 105, 9982, 10.1063/1.472933

1997, Int. J. Quantum Chem., 64, 285, 10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO;2-S

1999, J. Chem. Phys., 110, 5029, 10.1063/1.478401

1999, J. Chem. Phys., 110, 6158, 10.1063/1.478522

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

1995, Chem. Phys. Lett., 245, 171, 10.1016/0009-2614(95)01013-Y

1999, J. Comput. Chem., 20, 921, 10.1002/(SICI)1096-987X(19990715)20:9<921::AID-JCC3>3.0.CO;2-K

1991, Int. J. Quantum Chem., 40, 753, 10.1002/qua.560400605

1998, J. Chem. Phys., 109, 3313, 10.1063/1.476928

1997, J. Chem. Phys., 106, 1063, 10.1063/1.473182

2000, J. Phys. Chem. B, 104, 2794, 10.1021/jp993592k

2001, Science, 292, 702, 10.1126/science.1058853

1993, Phys. Rev. A, 47, 3649, 10.1103/PhysRevA.47.3649

1998, J. Chem. Phys., 109, 7764, 10.1063/1.477422