Human postprandial responses to food and potential for precision nutrition

Nature Medicine - Tập 26 Số 6 - Trang 964-973 - 2020
Sarah Berry1, Ana M. Valdes2, David A. Drew3, Francesco Asnicar4, Mohsen Mazidi5, Jonathan Wolf6, Joan Capdevila Pujol6, George Hadjigeorgiou6, Richard Davies6, Haya Al Khatib6, Christopher Bonnett6, Sajaysurya Ganesh6, Elco Bakker6, Deborah Hart5, Massimo Mangino5, Jordi Merino7, Inbar Linenberg6, Patrick Wyatt6, José M. Ordovás8, Christopher D. Gardner9, Linda M. Delahanty10, Andrew T. Chan3, Nicola Segata4, Paul W. Franks11, Tim D. Spector5
1Department of Nutrition, King’s College London, London, UK
2School of Medicine, University of Nottingham, Nottingham, UK
3Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
4Department CIBIO, University of Trento, Trento, Italy
5Department of Twins Research & Genetic Epidemiology, King’s College London, London, UK
6Zoe Global Ltd, London, UK
7Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
8JM-USDA-HNRCA at Tufts University, Boston, MA, USA
9University of Stanford, Stanford, CA, USA
10Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
11Department of Clinical Sciences, Lund University, Malmö, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

GBDD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

US Department of Health and Human Services & US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans 8th edn (2015).

Karpyn, A. Food and Public Health: A Practical Introduction (Oxford University Press, 2018).

European Food Safety Authority. Dietary reference values for nutrients summary report. EFSA Supporting Publications 14, e15121E (2017).

Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

Tebani, A. & Bekri, S. Paving the way to precision nutrition through metabolomics. Front. Nutr. 6, 41 (2019).

Kolovou, G. D. et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr. Vasc. Pharmacol. 9, 258–270 (2011).

Astley, C. M. et al. Genetic evidence that carbohydrate-stimulated insulin secretion leads to obesity. Clin. Chem. 64, 192–200 (2018).

Blaak, E. E. et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 13, 923–984 (2012).

DECODE Study Group, European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161, 397–405 (2001).

Ning, F. et al. Cardiovascular disease mortality in Europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care 33, 2211–2216 (2010).

Bansal, S. et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298, 309–316 (2007).

Lindman, A. S., Veierod, M. B., Tverdal, A., Pedersen, J. I. & Selmer, R. Nonfasting triglycerides and risk of cardiovascular death in men and women from the Norwegian Counties Study. Eur. J. Epidemiol. 25, 789–798 (2010).

Jackson, K. G., Poppitt, S. D. & Minihane, A. M. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220, 22–33 (2012).

Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

Moayyeri, A., Hammond, C. J., Hart, D. J. & Spector, T. D. The UK Adult Twin Registry (TwinsUK Resource). Twin Res. Hum. Genet. 16, 144–149 (2013).

Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 10, e1004235 (2014).

Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

Wojczynski, M. K. et al. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Metabolism 64, 1359–1371 (2015).

Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

Almgren, P. et al. Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight 2, e93306 (2017).

Wojcikowski, M., Ballester, P. J. & Siedlecki, P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 7, 46710 (2017).

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer New York, 2013).

Russell, W. R. et al. Impact of diet composition on blood glucose regulation. Crit. Rev. Food Sci. Nutr. 56, 541–590 (2016).

Jeong, Y. et al. A review of recent evidence from meal-based diet interventions and clinical biomarkers for improvement of glucose regulation. Prev. Nutr. Food Sci. 25, 9–24 (2020).

Delahanty, L. M. et al. Effects of weight loss, weight cycling, and weight loss maintenance on diabetes incidence and change in cardiometabolic traits in the Diabetes Prevention Program. Diabetes Care 37, 2738–2745 (2014).

Diabetes Prevention Program Research Group. et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374, 1677–1686 (2009).

Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

Papandonatos, G. D. et al. Genetic predisposition to weight loss and regain with lifestyle intervention: analyses from the diabetes prevention program and the look AHEAD randomized controlled trials. Diabetes 64, 4312–4321 (2015).

Taylor, R. Banting Memorial Lecture 2012: reversing the twin cycles of type 2 diabetes. Diabet. Med. 30, 267–275 (2013).

Bell, K. J. et al. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 38, 1008–1015 (2015).

Hansson, P. et al. Meals with similar fat content from different dairy products induce different postprandial triglyceride responses in healthy adults: a randomized controlled cross-over trial. J. Nutr. 149, 422–431 (2019).

Atkinson, F. S., Hancock, D., Petocz, P. & Brand-Miller, J. C. The physiologic and phenotypic significance of variation in human amylase gene copy number. Am. J. Clin. Nutr. 108, 737–748 (2018).

Gardner, C. D. et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA 319, 667–679 (2018).

Viitasalo, A. et al. Genetic predisposition to higher body fat yet lower cardiometabolic risk in children and adolescents. Int. J. Obes. (Lond.) 43, 2007–2016 (2019).

Hughes, R. L., Kable, M. E., Marco, M. & Keim, N. L. The role of the gut microbiome in predicting response to diet and the development of precision nutrition models. Part II: results. Adv. Nutr. 10, 979–998 (2019).

Lee, J. G. et al. Deep learning in medical imaging: general overview. Korean J. Radiol. 18, 570–584 (2017).

Dubois, C. et al. Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am. J. Clin. Nutr. 67, 31–38 (1998).

Garcia-Perez, I. et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5, 184–195 (2017).

Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

Berry, S. D. D. et al. Personalised REsponses to DIetary Composition Trial (PREDICT): an intervention study to determine inter-individual differences in postprandial response to foods. Protoc. Exch. https://doi.org/10.21203/rs.2.20798/v1 (2020).

Verdi, S. et al. TwinsUK: the UK adult twin registry update. Twin Res. Hum. Genet. 22, 523–529 (2019).

Mulligan, A. A. et al. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open. 4, e004503 (2014).

Flint, A., Raben, A., Blundell, J. E. & Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab Disord. 24, 38–48 (2000).

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V. & Egozcue, J. J. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 26, 322–329 (2016).

Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).

Johansson, J., Becker, C., Persson, N. G., Fex, M. & Torn, C. C-peptide in dried blood spots. Scand. J. Clin. Lab. Invest. 70, 404–409 (2010).

Samson, C. E., Galia, A. L., Llave, K. I., Zacarias, M. B. & Mercado-Asis, L. B. Postprandial peaking and plateauing of triglycerides and VLDL in patients with underlying cardiovascular diseases despite treatment. Int. J. Endocrinol. Metab. 10, 587–593 (2012).

Madhu, S., Sinha, B., Aslam, M., Mehrotra, G. & Dwivedi, S. Postprandial triglyceride responses and endothelial function in prediabetic first-degree relatives of patients with diabetes. J .Clin. Lipidol. 11, 1415–1420 (2017).

Nakamura, A. et al. Different postprandial lipid metabolism and insulin resistance between non-diabetic patients with and without coronary artery disease. J. Cardiol. 66, 435–444 (2015).

van Hees, V. T. et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 8, 12975 (2018).

Eitel, I. et al. Genome-wide association study in takotsubo syndrome—preliminary results and future directions. Int. J. Cardiol. 236, 335–339 (2017).

Slinker, B. K. & Glantz, S. A. Multiple regression for physiological data analysis: the problem of multicollinearity. Am. J. Physiol. 249, R1–R12 (1985).

Purcell, S. Variance components models for gene-environment interaction in twin analysis. Twin Res. 5, 554–571 (2002).

Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).

Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

Goff, D. C. Jr. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S49–S73 (2014).

American Diabetes Association Classification and Diagnosis of Diabetes. Diabetes Care 39, S13–S22 (2016).