Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose

Stem Cell Research & Therapy - Tập 9 Số 1 - 2018
Yasser Basmaeil1, A. M. Al Subayyil1, Tanvir Khatlani1, Eman Bahattab2, Monther Al‐Alwan3, Fawaz Abomaray4, Bill Kalionis5, Manal A. Alshabibi1, Ahmed Alaskar6,1, Mohamed Abumaree7,1
1Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
2National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
3Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
4Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
5Department of Maternal–Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women’s Hospital, Parkville, Australia
6College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
7College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–12. https://doi.org/10.1172/JCI29103 . PubMed PMID: 16823478; PubMed Central PMCID: PMCPMC1483155

Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81. PubMed PMID: 12020339

Morel O, Kessler L, Ohlmann P, Bareiss P. Diabetes and the platelet: toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis. 2010;212(2):367–76. https://doi.org/10.1016/j.atherosclerosis.2010.03.019 . PubMed PMID: 20394927

Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation. 2011;123(7):798–813. https://doi.org/10.1161/CIRCULATIONAHA.109.913376 . PubMed PMID: 21343595

Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43. https://doi.org/10.1093/eurheartj/eht149 . PubMed PMID: 23641007; PubMed Central PMCID: PMCPMC3743069

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. https://doi.org/10.1161/CIRCRESAHA.110.223545 . PubMed PMID: 21030723; PubMed Central PMCID: PMCPMC2996922

Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74. https://doi.org/10.1007/s11154-010-9134-4 . PubMed PMID: 20186491; PubMed Central PMCID: PMCPMC2882637

Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complicat. 2001;15(1):44–54. PubMed PMID: 11259926

Emerging Risk Factors C, Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314(1):52–60. https://doi.org/10.1001/jama.2015.7008 . PubMed PMID: 26151266; PubMed Central PMCID: PMCPMC4664176

Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36. https://doi.org/10.1016/S0140-6736(06)68967-8 . PubMed PMID: 16815377

Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani AA, et al. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev. 2013;9(1):16–31. https://doi.org/10.1007/s12015-012-9385-4 . PubMed PMID: 22628114

Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. 2013;9(5):620–41. https://doi.org/10.1007/s12015-013-9455-2 . PubMed PMID: 23812784

Abomaray FM, Al Jumah MA, Kalionis B, AlAskar AS, Al Harthy S, Jawdat D, et al. Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory phenotype in CD1+ dendritic cells. Stem Cell Rev. 2015;11(3):423–41. https://doi.org/10.1007/s12015-014-9562-8 . PubMed PMID: 25287760

Abumaree MH, Hakami M, Abomaray FM, Alshabibi MA, Kalionis B, Al Jumah MA, et al. Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta. 2017;59:74–86. https://doi.org/10.1016/j.placenta.2017.05.001 . PubMed PMID: 28502524

Alshabibi MA, Al Huqail AJ, Khatlani T, Abomaray FM, Alaskar AS, Alawad AO, et al. Mesenchymal stem/multipotent stromal cells from human decidua basalis reduce endothelial cell activation. Stem Cells Dev. 2017;26(18):1355–73. https://doi.org/10.1089/scd.2017.0096 . PubMed PMID: 28679316

Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, AlAskar AS, et al. Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua basalis of human term placenta. Stem Cells Int. 2016;2016:5184601. https://doi.org/10.1155/2016/5184601 . PubMed PMID: 27087815; PubMed Central PMCID: PMCPMC4764756

Braekke K, Harsem NK, Staff AC. Oxidative stress and antioxidant status in fetal circulation in preeclampsia. Pediatr Res. 2006;60(5):560–4. https://doi.org/10.1203/01.pdr.0000242299.01219.6a . PubMed PMID: 16988193

Kusuma GD, Abumaree MH, Pertile MD, Perkins AV, Brennecke SP, Kalionis B. Mesenchymal stem/stromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity. Stem Cell Rev. 2016;12(3):285–97. https://doi.org/10.1007/s12015-016-9649-5 . PubMed PMID: 26880140

Stout RW. Glucose inhibits replication of cultured human endothelial cells. Diabetologia. 1982;23(5):436–9. PubMed PMID: 7173520

Moriya J, Ferrara N. Inhibition of protein kinase C enhances angiogenesis induced by platelet-derived growth factor C in hyperglycemic endothelial cells. Cardiovasc Diabetol. 2015;14:19. https://doi.org/10.1186/s12933-015-0180-9 . PubMed PMID: 25849290; PubMed Central PMCID: PMCPMC4334399

Fang K, Fu W, Beardsley AR, Sun X, Lisanti MP, Liu J. Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle. 2007;6(2):199–204. https://doi.org/10.4161/cc.6.2.3740 . PubMed PMID: 17245131

Clement B, Musso O, Lietard J, Theret N. Homeostatic control of angiogenesis: a newly identified function of the liver? Hepatology. 1999;29(3):621–3. https://doi.org/10.1002/hep.510290341 . PubMed PMID: 10051458

Radisavljevic Z, Avraham H, Avraham S. Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem. 2000;275(27):20770–4. https://doi.org/10.1074/jbc.M002448200 . PubMed PMID: 10787417

Hamuro M, Polan J, Natarajan M, Mohan S. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis. 2002;162(2):277–87. PubMed PMID: 11996947

Daher Z, Noel J, Claing A. Endothelin-1 promotes migration of endothelial cells through the activation of ARF6 and the regulation of FAK activity. Cell Signal. 2008;20(12):2256–65. https://doi.org/10.1016/j.cellsig.2008.08.021 . PubMed PMID: 18814847

Sarabi A, Kramp BK, Drechsler M, Hackeng TM, Soehnlein O, Weber C, et al. CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment. J Thromb Haemost. 2011;9(1):209–19. https://doi.org/10.1111/j.1538-7836.2010.04119.x . PubMed PMID: 20961394

Paik JH, Chae S, Lee MJ, Thangada S, Hla T. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem. 2001;276(15):11830–7. https://doi.org/10.1074/jbc.M009422200 . PubMed PMID: 11150298

Yao JS, Zhai W, Young WL, Yang GY. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: the role for KDR and MMP-9. Biochem Biophys Res Commun. 2006;342(4):1396–404. https://doi.org/10.1016/j.bbrc.2006.02.100 . PubMed PMID: 16516857

Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170(6):3369–76. PubMed PMID: 12626597

Lai Y, Shen Y, Liu XH, Zhang Y, Zeng Y, Liu YF. Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway. Int J Biol Sci. 2011;7(6):782–91. PubMed PMID: 21750647; PubMed Central PMCID: PMCPMC3133886

Verma SK, Garikipati VN, Krishnamurthy P, Khan M, Thorne T, Qin G, et al. IL-10 accelerates re-endothelialization and inhibits post-injury intimal hyperplasia following carotid artery denudation. PLoS One. 2016;11(1):e0147615. https://doi.org/10.1371/journal.pone.0147615 . PubMed PMID: 26808574; PubMed Central PMCID: PMCPMC4725953

Kirkiles-Smith NC, Mahboubi K, Plescia J, McNiff JM, Karras J, Schechner JS, et al. IL-11 protects human microvascular endothelium from alloinjury in vivo by induction of survivin expression. J Immunol. 2004;172(3):1391–6. PubMed PMID: 14734714

Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998;1378(1):F79–113. PubMed PMID: 9739761

Celerier J, Cruz A, Lamande N, Gasc JM, Corvol P. Angiotensinogen and its cleaved derivatives inhibit angiogenesis. Hypertension. 2002;39(2):224–8. PubMed PMID: 11847188

Zania P, Kritikou S, Flordellis CS, Maragoudakis ME, Tsopanoglou NE. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. J Pharmacol Exp Ther. 2006;318(1):246–54. https://doi.org/10.1124/jpet.105.099069 . PubMed PMID: 16595737

Ribatti D. The discovery of the placental growth factor and its role in angiogenesis: a historical review. Angiogenesis. 2008;11(3):215–21. https://doi.org/10.1007/s10456-008-9114-4 . PubMed PMID: 18568405

Niu J, Wang K, Zhelyabovska O, Saad Y, Kolattukudy PE. MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther. 2013;347(2):288–97. https://doi.org/10.1124/jpet.113.207316 . PubMed PMID: 24008336; PubMed Central PMCID: PMCPMC3807059

Reed MJ, Koike T, Sadoun E, Sage EH, Puolakkainen P. Inhibition of TIMP1 enhances angiogenesis in vivo and cell migration in vitro. Microvasc Res. 2003;65(1):9–17. PubMed PMID: 12535866

Lopez-Pastrana J, Ferrer LM, Li YF, Xiong X, Xi H, Cueto R, et al. Inhibition of Caspase-1 activation in endothelial cells improves angiogenesis: a novel therapeutic potential for ischemia. J Biol Chem. 2015;290(28):17485–94. https://doi.org/10.1074/jbc.M115.641191 . PubMed PMID: 26037927; PubMed Central PMCID: PMCPMC4498083

He T, Lu T, d'Uscio LV, Lam CF, Lee HC, Katusic ZS. Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells. Circ Res. 2008;103(1):80–8. https://doi.org/10.1161/CIRCRESAHA.108.176057 . PubMed PMID: 18511850; PubMed Central PMCID: PMCPMC2664088

Li W, Ren G, Huang Y, Su J, Han Y, Li J, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012;19(9):1505–13. https://doi.org/10.1038/cdd.2012.26 . PubMed PMID: 22421969; PubMed Central PMCID: PMCPMC3422473

Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996;87(9):3877–82. PubMed PMID: 8611715

Dace DS, Khan AA, Kelly J, Apte RS. Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLoS One. 2008;3(10):e3381. https://doi.org/10.1371/journal.pone.0003381 . PubMed PMID: 18852882; PubMed Central PMCID: PMCPMC2557127

Zhao XY, Wang XF, Li L, Zhang L, Shen DL, Li DH, et al. Effects of high glucose on human umbilical vein endothelial cell permeability and myosin light chain phosphorylation. Diabetol Metab Syndr. 2015;7:98. https://doi.org/10.1186/s13098-015-0098-0 . PubMed PMID: 26583048; PubMed Central PMCID: PMCPMC4650340

Valdivielso JM, Montero A, Badr KF, Munger KA. Inhibition of 5-lipoxygenase activating protein decreases proteinuria in diabetic rats. J Nephrol. 2003;16(1):85–94. PubMed PMID: 12649539

Chen W, Gassner B, Borner S, Nikolaev VO, Schlegel N, Waschke J, et al. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res. 2012;93(1):141–51. https://doi.org/10.1093/cvr/cvr279 . PubMed PMID: 22025581; PubMed Central PMCID: PMCPMC3243041

Furst R, Bubik MF, Bihari P, Mayer BA, Khandoga AG, Hoffmann F, et al. Atrial natriuretic peptide protects against histamine-induced endothelial barrier dysfunction in vivo. Mol Pharmacol. 2008;74(1):1–8. https://doi.org/10.1124/mol.108.045773 . PubMed PMID: 18413663

Rossi E, Sanz-Rodriguez F, Eleno N, Duwell A, Blanco FJ, Langa C, et al. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood. 2013;121(2):403–15. https://doi.org/10.1182/blood-2012-06-435347 . PubMed PMID: 23074273

Esposito C, Fasoli G, Plati AR, Bellotti N, Conte MM, Cornacchia F, et al. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney Int. 2001;59(5):1842–9. https://doi.org/10.1046/j.1523-1755.2001.0590051842.x . PubMed PMID: 11318955

Dong F, Zhang X, Wold LE, Ren Q, Zhang Z, Ren J. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br. Aust J Pharm. 2005;145(3):323–33. https://doi.org/10.1038/sj.bjp.0706193 . PubMed PMID: 15765100; PubMed Central PMCID: PMCPMC1576147

Mikhail M, Vachon PH, D'Orleans-Juste P, Jacques D, Bkaily G. Role of endothelin-1 and its receptors, ETA and ETB, in the survival of human vascular endothelial cells. Can J Physiol Pharmacol. 2017;95(10):1298–305. https://doi.org/10.1139/cjpp-2017-0412 . PubMed PMID: 28732172

Sengupta S, Sellers LA, Matheson HB, Fan TP. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: an evaluation of possible mechanisms. Br J Pharmacol. 2003;139(2):219–31. https://doi.org/10.1038/sj.bjp.0705216 . PubMed PMID: 12770927; PubMed Central PMCID: PMCPMC1573835

Bock F, Shahzad K, Wang H, Stoyanov S, Wolter J, Dong W, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci U S A. 2013;110(2):648–53. https://doi.org/10.1073/pnas.1218667110 . PubMed PMID: 23267072; PubMed Central PMCID: PMCPMC3545757

Vinals F, Pouyssegur J. Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol. 2001;21(21):7218–30. https://doi.org/10.1128/MCB.21.21.7218-7230.2001 . PubMed PMID: 11585905; PubMed Central PMCID: PMCPMC99897

Kern TS, Du Y, Miller CM, Hatala DA, Levin LA. Overexpression of Bcl-2 in vascular endothelium inhibits the microvascular lesions of diabetic retinopathy. Am J Pathol. 2010;176(5):2550–8. https://doi.org/10.2353/ajpath.2010.091062 . PubMed PMID: 20363911; PubMed Central PMCID: PMCPMC2861119

Mazor R, Alsaigh T, Shaked H, Altshuler AE, Pocock ES, Kistler EB, et al. Matrix metalloproteinase-1-mediated up-regulation of vascular endothelial growth factor-2 in endothelial cells. J Biol Chem. 2013;288(1):598–607. https://doi.org/10.1074/jbc.M112.417451 . PubMed PMID: 23155052; PubMed Central PMCID: PMCPMC3537058

Wang JF, Zhang X, Groopman JE. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem. 2004;279(26):27088–97. https://doi.org/10.1074/jbc.M314015200 . PubMed PMID: 15102829

Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem. 2001;276(14):10627–33. https://doi.org/10.1074/jbc.M011449200 . PubMed PMID: 11134047

Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D, et al. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation. 2003;107(17):2250–6. https://doi.org/10.1161/01.CIR.0000062702.60708.C4 . PubMed PMID: 12668516

Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 2003;17(1):76–8. https://doi.org/10.1096/fj.02-0157fje . PubMed PMID: 12475915

Li G, Xu Y, Sheng X, Liu H, Guo J, Wang J, et al. Naringin protects against high glucose-induced human endothelial cell injury via antioxidation and CX3CL1 downregulation. Cell Physiol Biochem. 2017;42(6):2540–51. https://doi.org/10.1159/000480215 . PubMed PMID: 28848146

Stehouwer CD. Endothelial dysfunction in diabetic nephropathy: state of the art and potential significance for non-diabetic renal disease. Nephrol Dial Transplant. 2004;19(4):778–81. https://doi.org/10.1093/ndt/gfh015 . PubMed PMID: 15031329

Willemsen JM, Westerink JW, Dallinga-Thie GM, van Zonneveld AJ, Gaillard CA, Rabelink TJ, et al. Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J Cardiovasc Pharmacol. 2007;49(1):6–12. https://doi.org/10.1097/FJC.0b013e31802b31a7 . PubMed PMID: 17261957

Brizzi MF, Garbarino G, Rossi PR, Pagliardi GL, Arduino C, Avanzi GC, et al. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells. J Clin Invest. 1993;91(6):2887–92. https://doi.org/10.1172/JCI116534 . PubMed PMID: 7685775; PubMed Central PMCID: PMCPMC443359

Sasson S, Davarashvili A, Reich R. Role of lipoxygenase in the regulation of glucose transport in aortic vascular cells. Adv Exp Med Biol. 1999;469:377–83. PubMed PMID: 10667356

Yang KS, Lim JH, Kim TW, Kim MY, Kim Y, Chung S, et al. Vascular endothelial growth factor-receptor 1 inhibition aggravates diabetic nephropathy through eNOS signaling pathway in db/db mice. PLoS One. 2014;9(4):e94540. https://doi.org/10.1371/journal.pone.0094540 . PubMed PMID: 24759928; PubMed Central PMCID: PMCPMC3997361