Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods
Tóm tắt
Arm weight compensation with rehabilitation robots for stroke patients has been successfully used to increase the active range of motion and reduce the effects of pathological muscle synergies. However, the differences in structure, performance, and control algorithms among the existing robotic platforms make it hard to effectively assess and compare human arm weight relief. In this paper, we introduce criteria for ideal arm weight compensation, and furthermore, we propose and analyze three distinct arm weight compensation methods (
All three methods are based on arm models that are generalizable for use in different robotic devices and allow individualized adaptation to the subject by model parameters. The first method
All three arm weight compensation methods reduced the mean EMG activity of healthy subjects to at least 49% compared with the no compensation reference. The
Different arm weight compensation methods were developed according to initially defined criteria. The methods were then analyzed with respect to their sensitivity and required technology. In general, weight compensation performance improved with the level of technology, but increased cost and calibration efforts. This study reports a systematic way to analyze the efficacy of different weight compensation methods using EMG. Additionally, the feasibility of the best method,
Từ khóa
Tài liệu tham khảo
Nakayama H, Stig Jørgensen H, Otto Raaschou H, Skyhøj Olsen T. Recovery of upper extremity function in stroke patients: The Copenhagen stroke study. Arch Phys Med Rehabil. 1994; 75(4):394–8. https://doi.org/10.1016/0003-9993(94)90161-9.
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009; 8(8):741–54. http://dx.doi.org/10.1016/S1474-4422(09)70150-4. http://arxiv.org/abs/S1474-4422(09)70150-4.
Dewald JPA, Sheshadri V, Dawson ML, Beer RF. Upper-Limb Discoordination in Hemiparetic Stroke: Implications for Neurorehabilitation. Top Stroke Rehabil. 2001; 8(1):1–12. https://doi.org/10.1310/WA7K-NGDF-NHKK-JAGD.
Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA. Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng. 2007; 15(3):336–46. https://doi.org/10.1109/TNSRE.2007.903903.
Jackson A, Culmer P, Makower S, Levesley M, Richardson R, Cozens A, Williams MM, Bhakta B. Initial patient testing of iPAM - A robotic system for Stroke rehabilitation. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, vol. 00: 2007. p. 250–6. https://doi.org/10.1109/ICORR.2007.4428435.
Westerveld AJ, Aalderink BJ, Hagedoorn W, Buijze M, Schouten AC, Kooij HVD. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. IEEE Trans Biomed Eng. 2014; 61(10):2646–54. https://doi.org/10.1109/TBME.2014.2325532.
Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N. Use it and improve it or lose it: Interactions between arm function and use in humans post-stroke. PLoS Comput Biol. 2012; 8(2). https://doi.org/10.1371/journal.pcbi.1002343.
Stienen AHA, Hekman EEG, Van Der Helm FCT, Prange GB, Jannink MJA, Aalsma AMM, Van Kooij HD. Freebal: Dedicated gravity compensation for the upper extremities; 2007. pp. 804–8. https://doi.org/10.1109/ICORR.2007.4428517.
Knuth S, Passon A, Dähne F, Niedeggen A, Schmehl I, Schauer T. In: Ibáñez J, González-Vargas J, Azor ∖’ ∖in JM, Akay M, Pons JL, (eds).Adaptive Arm Weight Support Using a Cable-Driven Robotic System. Cham: Springer; 2017, pp. 1317–21. doi:10.1007/978-3-319-46669-9_215.
Stienen AHA, Hekman EEG, Prange GB, Jannink MJA, Aalsma AMM, van der Helm FCT, van der Kooij H. Dampace: Design of an Exoskeleton for Force-Coordination Training in Upper-Extremity Rehabilitation. J Med Devices. 2009; 3(3):031003. https://doi.org/10.1115/1.3191727.
Sanchez RJ, Wolbrecht E, Smith R, Liu J, Rao S, Cramer S, Rahman T, Bobrow JE, Reinkensmeyer DJ, Shah P. A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, vol. 2005: 2005. p. 500–4. https://doi.org/10.1109/ICORR.2005.1501151.
Perry BE, Evans EK, Stokic DS. Weight compensation characteristics of Armeo®Spring exoskeleton: implications for clinical practice and research. J NeuroEng Rehabil. 2017; 14(1):1–10. https://doi.org/10.1186/s12984-017-0227-0.
Just F, Özen Ö, Tortora S, Riener R, Rauter G. Feedforward model based arm weight compensation with the rehabilitation robot ARMin. IEEE Int Conf Rehabil Robot. 2017; July:72–7. https://doi.org/10.1109/ICORR.2017.8009224.
Frisoli A, Borelli L, Montagner A, Marcheschi S, Procopio C, Salsedo F, Bergamasco M, Carboncini MC, Tolaini M, Rossi B. Arm rehabilitation with a robotic exoskeleleton in Virtual Reality. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, vol. 00: 2007. p. 631–42. https://doi.org/10.1109/ICORR.2007.4428491.
Kanzler CM, Gomez SM, Rinderknecht MD, Gassert R, Lambercy O. Influence of Arm Weight Support on a Robotic Assessment of Upper Limb Function. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, volu. 2018-Augus: 2018. p. 1–6. https://doi.org/10.1109/BIOROB.2018.8487682.
Runnalls KD, Anson G, Wolf SL, Byblow WD. Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiol Rep. 2014; 2(12):1–12. https://doi.org/10.14814/phy2.12183.
Ellis MD, Lan Y, Yao J, Dewald JPA. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading. J NeuroEng Rehabil. 2016; 13(1):1–11. https://doi.org/10.1186/s12984-016-0203-0.
Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N. Changing Motor Synergies in Chronic Stroke. J Neurophysiol. 2007; 98(2):757–68. https://doi.org/10.1152/jn.01295.2006.
Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011; 49(10):1213–23. https://doi.org/10.1007/s11517-011-0809-0.
Pehlivan AU, Losey DP, Omalley MK. Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation. IEEE Trans Robot. 2016; 32(1):113–24. https://doi.org/10.1109/TRO.2015.2503726. http://arxiv.org/abs/arXiv:1406.0261v4.
Slotine JJE, Li W. on the Adaptive Control of Robot Manipulators,. Int J Robot Res. 1987; 6(3):49–59. https://doi.org/10.1177/027836498700600303.
Stienen AHA, Hekman EEG, Prange GB, Jannink MJA, van der Helm FCT, van der Kooij H. Freebal: Design of a Dedicated Weight-Support System for Upper-Extremity Rehabilitation. J Med Devices. 2009; 3(4):041009. https://doi.org/10.1115/1.4000493.
Just F, Özen Ö, Bösch P, Bobrovsky H, Klamroth-Marganska V, Riener R, Rauter G. Exoskeleton transparency: feed-forward compensation vs. disturbance observer. Automatisierungstechnik. 2018; 66(12):1014–26. https://doi.org/10.1515/auto-2018-0069.
Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: Targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009; 25(3):549–55. https://doi.org/10.1109/TRO.2009.2017111. NIHMS150003.
Sukal TM, Ellis MD, Dewald JPA. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: Neuroscientific implications. Exp Brain Res. 2007; 183(2):215–23. https://doi.org/10.1007/s00221-007-1029-6.
Ellis MD, Sukal-Moulton T, Dewald JPA. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009; 23(8):862–9. https://doi.org/10.1177/1545968309332927.
Krabben T, Prange GB, Molier BI, Stienen AH, Jannink MJ, Buurke JH, Rietman JS. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. J NeuroEng Rehabil. 2012; 9(1):1. https://doi.org/10.1186/1743-0003-9-44.
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke (Review) SUMMARY OF FINDINGS FOR THE MAIN COMPARISON. Cochrane Database Syst Rev. 2015; 11. https://doi.org/10.1002/14651858.CD006876.pub4.www.cochranelibrary.com.
Prange GB, Suenen AHA, Jannink MJA, Van Der Kooij H, Ijzerman MJ, Hermens HJ. Increased range of motion and decreased muscle activity during maximal reach with gravity compensation in stroke patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07 (July 2007): 2007. p. 467–71. https://doi.org/10.1109/ICORR.2007.4428467.
Prange GB, Kallenberg LAC, Jannink MJA, Stienen AHA, van der Kooij H, IJzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activity during reach and retrieval in healthy elderly. J Electromyogr Kinesiol. 2009; 19(2):40–9. https://doi.org/10.1016/j.jelekin.2007.08.001.
Prange GB, Jannink MJA, Stienen AHA, van der Kooij H, IJzerman MJ, Hermens HJ. Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients. Neurorehabil Neural Repair. 2009; 23(5):478–85. https://doi.org/10.1177/1545968308328720.
Runnalls KD, Anson G, Wolf SL, Byblow WD. Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiol Rep. 2014; 2(12):1–12. https://doi.org/10.14814/phy2.12183.
Prange GB, Jannink MJA, Stienen AHA, Kooij HVD, Ijzerman MJ, Hermens HJ. an explorative, cross sectional study into abnormal muscular coupling during reach in chronic stroke patients. J NeuroEng Rehabil. 2010:1–10. https://doi.org/10.1186/1743-0003-7-14.
Drillis R, Contini R, Bluestein M. Body Segment Parameters. New York: Research Division, NY: New York University, School of Engineering and Science; 1966. https://doi.org/10.1049/ecej:19890011.
Winter DA. Biomechanics and Motor Control of Human Movement; 2009. https://doi.org/10.1002/9780470549148. http://arxiv.org/abs/arXiv:0712.2824v3. http://doi.wiley.com/10.1002/9780470549148.
Marieb EN, Hoehn K. Human Anatomy & Physiology: Pearson Education; 2007, pp. 1095–9. https://doi.org/10.1007/BF00845519. http://arxiv.org/abs/1110.4742.
Just F, Baur K, Riener R, Klamroth-Marganska V, Rauter G. Online adaptive compensation of the ARMin Rehabilitation Robot. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE: 2016. p. 747–52. https://doi.org/10.1109/BIOROB.2016.7523716. http://ieeexplore.ieee.org/document/7523716/.
Gates DH, Walters LS, Cowley J, Wilken JM, Resnik L. Range of motion requirements for upper-limb activities of daily living. Am J Occup Ther. 2016; 70(1). https://doi.org/10.5014/ajot.2016.015487.
Holzbaur KRS, Murray WM, Delp SL. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 2005; 33(6):829–40. https://doi.org/10.1007/s10439-005-3320-7.
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4. 2014; 4:2–3. https://doi.org/10.18637/jss.v067.i01. http://arxiv.org/abs/1406.5823.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. 2008. https://doi.org/10.1002/bimj.200810425.