HuMiTar: A sequence-based method for prediction of human microRNA targets

Jishou Ruan1, Hanzhe Chen1, Lukasz Kurgan2, Ke Chen2, Chunsheng Kang3, Peiyu Pu3
1Chern Institute for Mathematics, College of Mathematics and LPMC, Nankai University, Tianjin, PR China
2Department of Electrical and Computer Engineering, University of Alberta, Canada
3Neuro-oncology laboratory, General Hospital of the Tianjin Medical University, Tianjin, PR China

Tóm tắt

Abstract Background MicroRNAs (miRs) are small noncoding RNAs that bind to complementary/partially complementary sites in the 3' untranslated regions of target genes to regulate protein production of the target transcript and to induce mRNA degradation or mRNA cleavage. The ability to perform accurate, high-throughput identification of physiologically active miR targets would enable functional characterization of individual miRs. Current target prediction methods include traditional approaches that are based on specific base-pairing rules in the miR's seed region and implementation of cross-species conservation of the target site, and machine learning (ML) methods that explore patterns that contrast true and false miR-mRNA duplexes. However, in the case of the traditional methods research shows that some seed region matches that are conserved are false positives and that some of the experimentally validated target sites are not conserved. Results We present HuMiTar, a computational method for identifying common targets of miRs, which is based on a scoring function that considers base-pairing for both seed and non-seed positions for human miR-mRNA duplexes. Our design shows that certain non-seed miR nucleotides, such as 14, 18, 13, 11, and 17, are characterized by a strong bias towards formation of Watson-Crick pairing. We contrasted HuMiTar with several representative competing methods on two sets of human miR targets and a set of ten glioblastoma oncogenes. Comparison with the two best performing traditional methods, PicTar and TargetScanS, and a representative ML method that considers the non-seed positions, NBmiRTar, shows that HuMiTar predictions include majority of the predictions of the other three methods. At the same time, the proposed method is also capable of finding more true positive targets as a trade-off for an increased number of predictions. Genome-wide predictions show that the proposed method is characterized by 1.99 signal-to-noise ratio and linear, with respect to the length of the mRNA sequence, computational complexity. The ROC analysis shows that HuMiTar obtains results comparable with PicTar, which are characterized by high true positive rates that are coupled with moderate values of false positive rates. Conclusion The proposed HuMiTar method constitutes a step towards providing an efficient model for studying translational gene regulation by miRs.

Từ khóa


Tài liệu tham khảo

Engels BM, Hutvagner G: Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006, 25: 6163-6169.

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5 (1): R1-

Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798.

Stark A, Brennecke J, Russell RB, Cohen SM: Identification of Drosophila MicroRNA targets. PLoS Biol. 2003, 1 (3): e397-10.1371/journal.pbio.0000060.

Doench JG, Sharp PA: Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18 (5): 504-511.

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human microRNA targets. PLoS Biol. 2004, 2 (11): e363-

Kiriakidou M, Nelson P, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou AG: A combined computational- experimental approach predicts human miR targets. Genes & Dev. 2004, 18: 1165-1178.

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517.

Vella MC, Reinert K, Slack FJ: Architecture of a validated microRNA: target interaction. Chem Biol. 2004, 11: 1619-1623.

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Piedade I, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20.

Saetrom O, Snove O, Saetrom P: Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA. 2005, 11 (7): 995-1003.

Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M: Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature. 2005, 434: 338-345.

Watanabe Y, Yachie N, Numata K, Saito R, Kanai A, Tomita M: Computational analysis of microRNA targets in Caenorhabditis elegans. Gene. 2006, 365: 2-10.

Brennecke J, Stark A, Russell RB, Cohen SM: Principles of MicroRNA-Target Recognition. PLoS Biol. 2005, 3 (3): e85-

Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods. 2007, 4 (12): 1045-9.

Rajewsky N: microRNA target predictions in animals. Nat Genet. 2006, 38 (Suppl): S8-S13.

Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006, 3: 881-886.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34: D140-D144.

Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS: Experimental validation of miRNA targets. Methods. 2008, 44 (1): 47-54.

Yan X, Chaoa T, Tub K, Zhanga Y, Xieb L, Gonga Y, Yuana J, Qianga B, Peng X: Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett. 2007, 581 (8): 1587-1593.

Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK: Naïve Bayes for microRNA target predictions – machine learning for microRNA targets. Bioinformatics. 2007, 23 (22): 2987-2992.

Moxon S, Moulton V, Kim JT: A scoring matrix approach to detecting miRNA target sites. Alg Mol Biol. 2008, 3: 3-10.1186/1748-7188-3-3.

Didiano D, Hobert O: Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006, 13 (9): 849-51.

Sethupathy P, Corda B, Hatziegeorgiou AG: TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 2006, 12: 192-197.

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B: Prediction of plant microRNA targets. Cell. 2002, 110: 513-520.

Zhang Y: miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 2005, 33: W701-W704.

Gusev Y: Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods. 2008, 44 (1): 61-72.

Adams BD, Furneaux H, White B: The Micro-Ribonucleic Acid (miRNA) miR-206 Targets the Human Estrogen Receptor-α (ERα) and Represses ERα Messenger RNA and Protein Expression in Breast Cancer Cell Lines. Mol Endocrinol. 2007, 21 (5): 1132-1147.

Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genetics. 2007, 39: 1278-84. 10.1038/ng2135.

Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J: Differentially Regulated Micro-RNAs and Actively Translated Messenger RNA Transcripts by Tumor suppressor p53 in Colon Cancer. Clin Cancer Res. 2006, 12 (7 Pt 1): 2014-2024.

Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB: Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 2007, 13: 1894-1910.

Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, 318 (5858): 1931-4.

Rusk N: When microRNAs activate translation. Nature Methods. 2008, 5: 1223-

Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005, 123: 1133-46.

Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y: Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007, 14: 287-94.

Grimson A, Kai-How Farth K, Johnston WK, Garrnet-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell. 2007, 27: 91-105.