How to measure and predict the molar absorption coefficient of a protein

Protein Science - Tập 4 Số 11 - Trang 2411-2423 - 1995
C. Nick Pace1,2,3, F.F. Vajdos2, Lanette Fee2, Gerald R. Grimsley3, Thomas H. Gray3
1Center for Macromolecular Design, Texas A&M University, College Station, Texas 77843-1114
2Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-1114
3Department of Medical Biochemistry and Genetics, Texas A & M University, College Station, Texas 77843-1114

Tóm tắt

Abstract

The molar absorption coefficient, ε, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring ε for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319–326] and is based on data from Edelhoch [1967, Biochemistry 6:1948–1954].) The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average ε values for these chromophores in a sample of 18 well‐characterized proteins have been estimated, and the ε values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average ε values for the proteins are less than the ε values measured in any of the solvents. For Tyr, the average ε values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured ε values for 80 proteins, the ε at 280 nm of a folded protein in water, ε(280), can best be predicted with this equation

ϵ(280) (M−1 cm−1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125).

These ε(280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict ε.

Từ khóa


Tài liệu tham khảo

10.1111/j.1432-1033.1985.tb09252.x

10.1021/bi00078a003

10.1042/bj0650273

Bailey JE, 1968, Handbook of biochemistry, B‐18

Benson AM, 1975, Concentration‐dependent association of Δ‐3‐ketosteroid isomerase of Pseudomonas testosteroni, J Biol Chem, 250, 276, 10.1016/S0021-9258(19)42011-5

10.1021/bi00734a027

10.1021/bi00641a001

10.1021/bi00280a010

10.1016/0167-4838(93)90220-L

10.1021/bi00859a010

10.1016/0005-2795(77)90166-0

10.1271/bbb1961.31.710

10.1016/0003-2697(89)90602-7

10.1002/pro.5560030414

10.1111/j.1432-1033.1991.tb15900.x

10.1111/j.1399-3011.1974.tb02380.x

10.1021/bi00135a019

10.1021/j100882a043

10.1016/0003-2697(74)90429-1

10.1016/S0076-6879(85)17018-7

10.1002/bip.360301311

10.1016/0006-3002(59)90526-8

10.1016/0003-2697(78)90035-0

10.1021/bi00427a022

10.1016/S0076-6879(78)48008-5

10.1021/ja01503a008

10.1021/bi00699a005

10.1021/bi00876a029

10.1002/prot.340080104

10.1021/bi00058a016

10.1021/bi00241a021

10.1016/0003-2697(92)90279-G

Mach H, 1995, Ultraviolet absorption spectroscopy, Methods Mol Biol, 40, 91

10.1016/0022-2836(91)90215-R

Minato S, 1966, Crystallization of ribonuclease TI, J Biochem, 59, 443, 10.1093/oxfordjournals.jbchem.a128325

10.1016/0003-9861(86)90020-2

10.1021/bi00491a010

Pace CN, 1966, The reversible denaturation of β‐lactoglobulin A [dissertation]

10.1016/0003-2697(87)90186-2

10.1111/j.1432-1033.1986.tb09653.x

Pettigrew DW, 1988, Escherichia coli glycerol kinase: Cloning and sequencing of the glpK gene and the primary structure of the enzyme, J Biol Chem, 263, 135, 10.1016/S0021-9258(19)57368-9

10.1016/0003-9861(81)90209-5

10.1016/0022-2836(89)90318-5

10.1146/annurev.bb.06.060177.001055

10.1016/0304-4165(64)90030-3

10.1021/bi00687a028

Runyon GT, 1989, Escherichia coli helicase II (UvrD) protein can completely unwind fully duplex linear and nicked circular DNA, J Biol Chem, 264, 17502, 10.1016/S0021-9258(18)71522-6

Schmid FX, 1989, Protein structure: A practical approach, 251

10.1016/0003-2697(74)90034-7

10.1016/0006-3002(57)90096-3

10.1016/0165-022X(90)90076-O

SinclairJF.1995.Equilibrium and kinetic studies of the folding of the subunits of bacterial luciferase [dissertation]. College Station Texas: Texas A&M University.

10.1016/0003-2697(73)90365-5

10.1016/0005-2795(74)90230-X

10.1093/oxfordjournals.jbchem.a127246

Takahashi K., 1962, The structure and function of ribonuclease T1. II. Further purification and amino acid composition of ribonuclease T1, J Biochem, 51, 95

10.1021/ja01497a045

10.1021/bi00721a024

10.1016/S0065-3233(08)60056-X

White FH, 1961, Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease, J Biol Chem, 236, 1353, 10.1016/S0021-9258(18)64176-6

Yanari S, 1960, Interpretation of the ultraviolet spectral changes of proteins, J Biol Chem, 235, 2818, 10.1016/S0021-9258(18)64546-6

10.1021/bi00177a023