How the diffusivity profile reduces the arbitrariness of protein folding free energies

Journal of Chemical Physics - Tập 132 Số 24 - 2010
Michael Hinczewski1,2, Yann von Hansen1, Joachim Dzubiella1, Roland R. Netz1
1Technical University of Munich 1 Department of Physics, , 85748 Garching, Germany
2University of Maryland 2 Institute for Physical Science and Technology, , College Park, Maryland 20742, USA

Tóm tắt

The concept of a protein diffusing in its free-energy folding landscape has been fruitful for both theory and experiment. Yet the choice of the reaction coordinate (RC) introduces an undesirable degree of arbitrariness into the problem. We analyze extensive simulation data of an α-helix in explicit water solvent as it stochastically folds and unfolds. The free-energy profiles for different RCs exhibit significant variations, some having an activation barrier, while others not. We show that this variation has little effect on the predicted folding kinetics if the diffusivity profiles are properly taken into account. This kinetic quasi-universality is rationalized by an RC rescaling, which, due to the reparameterization invariance of the Fokker–Planck equation, allows the combination of free-energy and diffusivity effects into a single function, the rescaled free-energy profile. This rescaled free energy indeed shows less variation among different RCs than the bare free energy and diffusivity profiles separately do, if we properly distinguish between RCs that contain knowledge of the native state and those that are purely geometric in nature. Our method for extracting diffusivity profiles is easily applied to experimental single molecule time series data and might help to reconcile conflicts that arise when comparing results from different experimental probes for the same protein.

Từ khóa


Tài liệu tham khảo

2006, Chem. Rev. (Washington, D.C.), 106, 1559, 10.1021/cr040425u

2008, Annu. Rev. Biophys., 37, 289, 10.1146/annurev.biophys.37.092707.153558

2005, Q. Rev. Biophys., 38, 245, 10.1017/S0033583506004185

1999, Structure and Mechanism in Protein Science

2008, Proc. Natl. Acad. Sci. U.S.A., 105, 18320, 10.1073/pnas.0806154105

2006, Proc. Natl. Acad. Sci. U.S.A., 103, 12394, 10.1073/pnas.0604748103

2009, Proc. Natl. Acad. Sci. U.S.A., 106, 1057, 10.1073/pnas.0808581106

2004, J. Am. Chem. Soc., 126, 14686, 10.1021/ja046209k

2009, Proc. Natl. Acad. Sci. U.S.A., 106, 11837, 10.1073/pnas.0901178106

2006, Proc. Natl. Acad. Sci. U.S.A., 103, 1244, 10.1073/pnas.0509217103

2005, Proc. Natl. Acad. Sci. U.S.A., 102, 2283, 10.1073/pnas.0409270102

2009, Proc. Natl. Acad. Sci. U.S.A., 106, 103, 10.1073/pnas.0802986106

2009, Proc. Natl. Acad. Sci. U.S.A., 106, 16239, 10.1073/pnas.0909126106

1993, Proc. Natl. Acad. Sci. U.S.A., 90, 6369, 10.1073/pnas.90.13.6369

1995, J. Phys. I, 5, 1457, 10.1051/jp1:1995209

1998, J. Mol. Biol., 277, 985, 10.1006/jmbi.1998.1645

1983, J. Chem. Phys., 79, 2042, 10.1063/1.445988

1996, J. Chem. Phys., 104, 5860, 10.1063/1.471317

1998, J. Chem. Phys., 108, 334, 10.1063/1.475393

1988, Proc. Natl. Acad. Sci. U.S.A., 85, 2029, 10.1073/pnas.85.7.2029

1992, J. Chem. Phys., 97, 3587, 10.1063/1.462993

2009, Phys. Rev. Lett., 102, 108101, 10.1103/PhysRevLett.102.108101

2009, Phys. Rev. Lett., 103, 028102, 10.1103/PhysRevLett.103.028102

2006, Phys. Rev. Lett., 96, 228104, 10.1103/PhysRevLett.96.228104

2007, Proc. Natl. Acad. Sci. U.S.A., 104, 14646, 10.1073/pnas.0606506104

2010, Proc. Natl. Acad. Sci. U.S.A., 107, 1088, 10.1073/pnas.0910390107

2007, J. Mol. Biol., 372, 756, 10.1016/j.jmb.2007.07.010

1987, Proc. Natl. Acad. Sci. U.S.A., 84, 8898, 10.1073/pnas.84.24.8898

2008, J. Am. Chem. Soc., 130, 14000, 10.1021/ja805562g

2006, Science, 314, 1001, 10.1126/science.1133601

2010, Proc. Natl. Acad. Sci. U.S.A., 107, 2013, 10.1073/pnas.0909854107

2008, J. Am. Chem. Soc., 130, 1538, 10.1021/ja0771641

2002, Annu. Rev. Phys. Chem., 53, 291, 10.1146/annurev.physchem.53.082301.113146

2005, Proc. Natl. Acad. Sci. U.S.A., 102, 6732, 10.1073/pnas.0408098102

2006, J. Chem. Phys., 125, 024106, 10.1063/1.2212942

2007, Phys. Rev. Lett., 99, 118102, 10.1103/PhysRevLett.99.118102

2009, Proc. Natl. Acad. Sci. U.S.A., 106, 19011, 10.1073/pnas.0905466106

2003, Biophys. J., 85, 3187, 10.1016/S0006-3495(03)74736-5

2006

1983, Biopolymers, 22, 2577, 10.1002/bip.360221211

1990, Rev. Mod. Phys., 62, 251, 10.1103/RevModPhys.62.251

2005, New J. Phys., 7, 34, 10.1088/1367-2630/7/1/034

1966, Adv. Chem. Phys., 13, 1, 10.1002/9780470140154.ch1

2009, Functional Data Analysis with R and MATLAB, 10.1007/978-0-387-98185-7

2005, J. Phys. Chem. B, 109, 6780, 10.1021/jp045544s

2008, Proc. Natl. Acad. Sci. U.S.A., 105, 13841, 10.1073/pnas.0800228105

See supplementary material at http://dx.doi.org/10.1063/1.3442716 for full details of the mapping between RCs and extracting the diffusivity profile through first-passage/Bayesian methods.

2003, Biopolymers, 68, 63, 10.1002/bip.10216

2007, J. Phys. Chem. B, 111, 3508, 10.1021/jp067637a

2003, Proteins, 53, 148, 10.1002/prot.10483

2004, Proc. Natl. Acad. Sci. U.S.A., 101, 6456, 10.1073/pnas.0307898101