Mức độ dẻo dai của các mạch thần kinh vận động trong tủy sống người là như thế nào?

Springer Science and Business Media LLC - Tập 235 - Trang 3243-3249 - 2017
Lasse Christiansen1,2,3, Jesper Lundbye-Jensen1,2, Monica A. Perez3, Jens Bo Nielsen1,4
1Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
2Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
3Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, USA
4Elsass Institute, Charlottenlund, Denmark

Tóm tắt

Các nghiên cứu trên người và động vật đã chứng minh rằng các mạch thần kinh trong tủy sống cho thấy những thay đổi thích ứng do sự thay đổi đầu vào từ các vùng trên tủy và/hoặc đầu vào cảm giác đến các mạch thần kinh tủy trong mối quan hệ với học tập, bất động, chấn thương và phục hồi thần kinh. Những thích ứng có thể hồi phục sau, ví dụ như việc tiếp thu hoặc hoàn thiện một kỹ năng vận động, phụ thuộc rất nhiều vào sự tích hợp chức năng giữa các đầu vào từ vùng trên tủy và các đầu vào cảm giác đến các mạng lưới tủy sống. Do đó, điều thường được coi là sự thay đổi trong các mạch thần kinh tủy có thể là sự thay đổi trong đầu vào xuống từ vùng trên tủy hoặc đầu vào cảm giác hoặc trong sự tích hợp tương đối của những đầu vào này, tức là sự thay đổi trong trọng số thần kinh. Điều này được thể hiện qua các phát hiện chứng minh chỉ có những thay đổi chức năng đặc hiệu theo nhiệm vụ sau các khoảng thời gian có thay đổi đầu vào, trong khi các phản ứng khi nghỉ vẫn không bị ảnh hưởng. Trên thực tế, vị trí gần gũi của các mạch thần kinh tủy với thế giới bên ngoài có thể đòi hỏi một tổ chức cứng nhắc hơn so với các mạch thần kinh vỏ não linh hoạt cao. Việc hiểu biết tất cả những điều này là quan trọng cho việc lập kế hoạch và thực hiện phục hồi thần kinh.

Từ khóa


Tài liệu tham khảo

Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64 Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137:1394–1409 Bernhard CG, Bohm E (1954) Monosynaptic corticospinal activation of fore limb motoneurons in monkeys (Macaca mulatta). Acta Physiol Scand 31:104–112 Bunday KL, Perez MA (2012) Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol 22:2355–2361 Burke D (1988) Spasticity as an adaptation to pyramidal tract injury. Adv Neurol 47:401–423 Cardin V (2016) Effects of aging and adult-onset hearing loss on cortical auditory regions. Front Neurosci 10:199 Chen XY, Carp JS, Chen L, Wolpaw JR (2002) Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Exp Brain Res 144:88–94 Chen XY, Chen Y, Chen L, Tennissen AM, Wolpaw JR (2006) Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats. J Neurotrauma 23:1705–1712 Christiansen L, Larsen MN, Grey MJ, Nielsen JB, Lundbye-Jensen J (2017) Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand. Eur J Neurosci 45(12):1490–1500 Clarac F, Barbara JG (2011) The emergence of the “motoneuron concept”: from the early 19th C to the beginning of the 20th C. Brain Res 1409:23–41 Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P et al (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342 Crone C, Nielsen J (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J Physiol 416:255–272 deVries HA, Wiswell RA, Romero GT, Heckathorne E (1985) Changes with age in monosynaptic reflexes elicited by mechanical and electrical stimulation. Am J Phys Med 64:71–81 Dietz V (2003) Spastic movement disorder: what is the impact of research on clinical practice? J Neurol Neurosurg Psychiatry 74:820–821 Dietz V, Sinkjaer T (2007) Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 6:725–733 Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123(Pt 1):51–64 Faist M, Dietz V, Pierrot-Deseilligny E (1996) Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait. Exp Brain Res 109:441–449 Fetz EE, Cheney PD (1987) Functional relations between primate motor cortex cells and muscles: fixed and flexible. Ciba Found Symp 132:98–117 Geertsen SS, Kjaer M, Pedersen KK, Petersen TH, Perez MA, Nielsen JB (2013) Central common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers. J Appl Physiol 115:1075–1081 Geertsen SS, Kirk H, Lorentzen J, Jorsal M, Johansson CB, Nielsen JB (2015) Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness. Clin Neurophysiol 126(12):2320–2329 Gracies JM (2005) Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31:552–571 Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sorensen F et al (2008) Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res 185:189–197 Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C et al (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947 Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol 389:757–772 Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H (1996) On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res 108:450–462 Jensen JL, Marstrand PC, Nielsen JB (2005) Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 99:1558–1568 Johansson RS, Hger C, Backstrom L (1992) Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res 89:204–213 Kido A, Tanaka N, Stein RB (2004) Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol 82:238–248 Koceja DM, Mynark RG (2000) Comparison of heteronymous monosynaptic Ia facilitation in young and elderly subjects in supine and standing positions. Int J Neurosci 103:1–17 Koceja DM, Burke JR, Kamen G (1991) Organization of segmental reflexes in trained dancers. Int J Sports Med 12:285–289 Larsen LH, Jensen T, Christensen MS, Lundbye-Jensen J, Langberg H, Nielsen JB (2016) Changes in corticospinal drive to spinal motoneurons following tablet-based practice of manual dexterity. Physiol Rep 4(2):e12684 Lee do K, Ulrich BD (2015) Functioning of peripheral Ia pathways in leg muscles of newly walking toddlers. Hum Mov Sci 40:193–210 Leonard CT, Hirschfeld H (1995) Myotatic reflex responses of non-disabled children and children with spastic cerebral palsy. Dev Med Child Neurol 37:783–799 Leonard CT, Matsumoto T, Diedrich P (1995) Human myotatic reflex development of the lower extremities. Early Hum Dev 43:75–93 Leukel C, Taube W, Rittweger J, Gollhofer A, Ducos M et al (2015) Changes in corticospinal transmission following 8 weeks of ankle joint immobilization. Clin Neurophysiol 126:131–139 Loeb GE (2001) Learning from the spinal cord. J Physiol 533:111–117 Luebke J, Barbas H, Peters A (2010) Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev 62:212–232 Luff AR (1998) Age-associated changes in the innervation of muscle fibers and changes in the mechanical properties of motor units. Ann N Y Acad Sci 854:92–101 Lundbye-Jensen J, Nielsen JB (2008a) Central nervous adaptations following 1 wk of wrist and hand immobilization. J Appl Physiol 105:139–151 Lundbye-Jensen J, Nielsen JB (2008b) Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans. J Physiol 586:4121–4135 Mazzaro N, Nielsen JF, Grey MJ, Sinkjaer T (2007) Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke. J Stroke Cerebrovasc Dis 16:135–144 Meunier S, Kwon J, Russmann H, Ravindran S, Mazzocchio R, Cohen L (2007) Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. J Physiol 579:375–388 Morita H, Shindo M, Yanagawa S, Yoshida T, Momoi H, Yanagisawa N (1995) Progressive decrease in heteronymous monosynaptic Ia facilitation with human ageing. Exp Brain Res 104:167–170 Myklebust BM, Gottlieb GL (1993) Development of the stretch reflex in the newborn: reciprocal excitation and reflex irradiation. Child Dev 64:1036–1045 Myklebust BM, Gottlieb GL, Agarwal GC (1986) Stretch reflexes of the normal infant. Dev Med Child Neurol 28:440–449 Newton I, Bernoulli D, MacLaurin C, Euler L (1833) Philosophiae naturalis principia mathematica, vol 1. excudit G. Brookman, impensis TT et J. Tegg, Londini Nielsen JB (1998) Co-contraction of antagonistic muscles in man. Dan Med Bull 45:423–435 Nielsen J, Crone C, Hultborn H (1993a) H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol 66:116–121 Nielsen J, Petersen N, Deuschl G, Ballegaard M (1993b) Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J Physiol 471:223–243 Nielsen J, Petersen N, Crone C (1995) Changes in transmission across synapses of Ia afferents in spastic patients. Brain 118(Pt 4):995–1004 Nielsen JB, Petersen NT, Crone C, Sinkjaer T (2005) Stretch reflex regulation in healthy subjects and patients with spasticity. Neuromodulation 8:49–57 Nielsen JB, Crone C, Hultborn H (2007) The spinal pathophysiology of spasticity—from a basic science point of view. Acta Physiol 189:171–180 O’Sullivan MC, Eyre JA, Miller S (1991) Radiation of phasic stretch reflex in biceps brachii to muscles of the arm in man and its restriction during development. J Physiol 439:529–543 O’Sullivan MC, Miller S, Ramesh V, Conway E, Gilfillan K et al (1998) Abnormal development of biceps brachii phasic stretch reflex and persistence of short latency heteronymous reflexes from biceps to triceps brachii in spastic cerebral palsy. Brain 121(Pt 12):2381–2395 Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401 Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205 Perez MA, Lungholt BK, Nielsen JB (2005) Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. J Physiol 568:343–354 Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurons following visuo-motor skill learning in humans. J Physiol 573:843–855 Perez MA, Lundbye-Jensen J, Nielsen JB (2007) Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. J Neurophysiol 98:3677–3687 Peters A (2007) The effects of normal aging on nerve fibers and neuroglia in the central nervous system. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press/Taylor & Francis, Boca Raton, pp 97–125 Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697 Sabbahi MA, Sedgwick EM (1982) Age-related changes in monosynaptic reflex excitability. J Gerontol 37:24–32 Sugiura M (2016) Functional neuroimaging of normal aging: declining brain, adapting brain. Ageing Res Rev 30:61–72 Thompson AK, Wolpaw JR (2014) Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci 8:25 Tsuruike M, Kitano K, Koceja DM, Riley ZA (2012) Differential control of H-reflex amplitude in different weight-bearing conditions in young and elderly subjects. Clin Neurophysiol 123:2018–2024 Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 111:746–754 Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol 189:155–169 Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217 Zampieri S, Mosole S, Lofler S, Fruhmann H, Burggraf S et al (2015) Physical exercise in aging: nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur J Transl Myol 25:237–242