Cách mà động vật giáp xác vi sinh sống trong môi trường và ảnh hưởng đến hệ sinh thái: góc độ thuộc tính chức năng

International Aquatic Research - Tập 11 - Trang 207-223 - 2019
Elder de Oliveira Sodré1, Reinaldo Luiz Bozelli1
1Departamento de Ecologia, Universidade Federal do Rio de Janeiro, CCS, IB, Rio de Janeiro, Brazil

Tóm tắt

Các thuộc tính chức năng là những đặc điểm sinh thái có liên quan của các loài. Chúng có liên quan đến cấu trúc cộng đồng trước những yếu tố môi trường (thuộc tính phản ứng) và các quá trình hệ sinh thái (thuộc tính tác động). Đối với động vật giáp xác vi sinh sống, sự liên kết giữa các thuộc tính chức năng và các phản ứng hoặc tác động của chúng không phải lúc nào cũng rõ ràng. Mục tiêu của chúng tôi là xem xét tài liệu về việc liên kết các thuộc tính chức năng với các yếu tố môi trường và các quá trình hệ sinh thái cho các loài động vật giáp xác lớp Cladocera và Copepoda. Các thuộc tính phản ứng được thảo luận trong bốn danh mục: hình thái học, lịch sử sống, hành vi hoặc sinh lý học. Nhiệt độ, sự săn mồi, tài nguyên và các yếu tố căng thẳng là những yếu tố quan trọng ảnh hưởng đến các thuộc tính hình thái và lịch sử sống. Kích thước cơ thể, một thuộc tính hình thái, có thể là thuộc tính quan trọng nhất, vì nó phản ứng với một số đặc điểm môi trường và được liên kết với các thuộc tính sinh lý học cũng như các tác động của zooplankton lên các chức năng hệ sinh thái. Từ góc độ hệ sinh thái, zooplankton là một liên kết năng lượng quan trọng giữa các nhà sản xuất sơ cấp và các nhà tiêu thụ thứ cấp. Trong các mạng thức ăn, nó có thể kiểm soát sinh khối và năng suất thực vật phù du, dẫn đến hậu quả cho toàn bộ hồ nước. Ảnh hưởng của nó đến các chu trình carbon, nitơ và photpho được kỳ vọng sẽ tăng lên theo kích thước cơ thể. Các thuộc tính khác có thể cũng quan trọng, nhưng vẫn còn thiếu thông tin. Chúng tôi chỉ ra rằng cần có thêm nghiên cứu về các thuộc tính chức năng, đặc biệt là với các loài copepod nước ngọt và các loài nhiệt đới bị bỏ qua. Để hiểu rõ hơn về các hệ thống tự nhiên, cần có một cách tiếp cận tích hợp nhiều thuộc tính với nhiều yếu tố môi trường và chức năng hệ sinh thái.

Từ khóa

#thuộc tính chức năng #động vật giáp xác vi sinh sống #hệ sinh thái #phản ứng sinh thái

Tài liệu tham khảo

Acerenza L (2016) Constraints, trade-offs and the currency of fitness. J Mol Evol 82:117–127. https://doi.org/10.1007/s00239-016-9730-3 Adamczuk M (2010) Different life-history trade-offs of two Daphnia species (Cladocera, Crustacea) under natural conditions as the response to predation and competition. Ann Limnol Int J Limnol 46:241–247. https://doi.org/10.1051/limn/2010022 Adamczuk M (2012) The development and reproductive output of three species of cladocera (crustacea, branchiopoda) with different size spectra as the result of vertebrate and invertebrate predation impact. Invertebr Reprod Dev 56:293–298. https://doi.org/10.1080/07924259.2011.614281 Alcaraz M, Almeda M, Calbet A et al (2010) The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. Polar Biol 33:1719–1731. https://doi.org/10.1007/s00300-010-0789-9 Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814 Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509. https://doi.org/10.1093/icb/44.6.498 Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58. https://doi.org/10.1016/S0306-4565(99)00015-7 Azuraidi OM, Yusoff FM, Shamsudin MN et al (2013) Effect of food density on male appearance and ephippia production in a tropical cladoceran, Moina micrura Kurz, 1874. Aquaculture 412–413:131–135. https://doi.org/10.1016/j.aquaculture.2013.06.034 Ban S (1994) Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J Plankton Res 16:721–735. https://doi.org/10.1093/plankt/16.6.721 Ban S, Tenma H, Mori T, Nishimura K (2009) Effects of physical interference on life history shifts in Daphnia pulex. J Exp Biol 212:3174–3183. https://doi.org/10.1242/jeb.031518 Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813. https://doi.org/10.1111/j.1365-2427.2007.01733.x Basińska AM, Antczak M, Świdnicki K et al (2014) Habitat type as strongest predictor of the body size distribution of Chydorus sphaericus (O. F. Müller) in small water bodies. Int Rev Hydrobiol 99:382–392. https://doi.org/10.1002/iroh.201301678 Beaver JR, Tausz CE, Renicker TR et al (2014) The late summer crustacean zooplankton in western USA reservoirs reflects ecoregion, temperature and latitude. Freshw Biol 59:1173–1186. https://doi.org/10.1111/fwb.12338 Benedetti F, Gasparini S, Ayata S-D (2016) Identifying copepod functional groups from species functional traits. J Plankton Res 38:159–166. https://doi.org/10.1093/plankt/fbv096 Benedetti F, Vogt M, Righetti D (2018) Do functional groups of planktonic copepods differ in their ecological niches? J Biogeogr 45:604–616. https://doi.org/10.1111/jbi.13166 Bottrell HH, Duncan A, Gliwicz ZM et al (1976) Review of some problems in zooplankton production studies. Nor J Zool 24:419–456 (citeulike-article-id:4024185) Bozkurt A, Can MF (2014) Seasonal variations in body length and fecundity of 2 copepod species: Termocyclops crassus (Fischer, 1853) and Eudiaptomus drieschi (Poppe & mrázek, 1895). Turk J Zool 38:222–228. https://doi.org/10.3906/zoo-1007-7 Bradley CJ, Strickler JR, Buskey EJ, Lenz PH (2013) Swimming and escape behavior in two species of calanoid copepods from nauplius to adult. J Plankton Res 35:49–65. https://doi.org/10.1093/plankt/fbs088 Brooks JL, Dodson SI (1965) Predation, body size and composition of zoopkankton. Science 150:28–35. https://doi.org/10.1126/science.150.3692.28 Bruijing M, ten Berge ACM, Jongejans E (2018) Population level responses to temperature, density and clonal differences in Daphnia magna as revealed by integral projection modelling. Funct Ecol Ecol. https://doi.org/10.1111/1365-2435.13192 Brun P, Payne MR, Kiørboe T (2016) Trait biogeography of marine copepods—an analysis across scales. Ecol Lett 19:1403–1413. https://doi.org/10.1111/ele.12688 Bukovinszky T, Verschoor AM, Helmsing NR et al (2012) The good, the bad and the plenty : interactive effects of food quality and quantity on the growth of different Daphnia species. PLoS One. https://doi.org/10.1371/journal.pone.0042966 Bunker AJ, Hirst AG (2004) Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Mar Ecol Prog Ser 279:161–181 Bunner HC, Halcrow K (1977) experimental induction of the production of Ephippia by Daphnia magna Straus (Cladocera). Crustaceana 32:77–86 Burks RL, Jeppesen E, Lodge DM (2001) Littoral zone structures as Daphnia refugia against fish predators. Limnol Oceanogr 46:230–237 Burks RL, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw Biol 47:343–365 Byrnes JEK, Gamfeldt L, Isbell F et al (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124. https://doi.org/10.1111/2041-210X.12143 Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci 105:17012–17017. https://doi.org/10.1073/pnas.0805962105 Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x Cadotte MW, Davies TJ, Peres-Neto PR (2017) Why phylogenies do not always predict ecological differences. Ecol Monogr 87:535–551. https://doi.org/10.1002/ecm.1267 Calaça AM, Grelle CEV (2016) Diversidade funcional de comunidades: discussões conceituais e importantes avanços metodológicos. Oecol Aust 20:401–416. https://doi.org/10.4257/oeco.2016.2004.01 Callieri C, Pugnetti A, Manca M (1999) Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton. J Limnol 58:144–151 Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148 Carmona CP, de Bello F, Mason NWH, Lepš J (2016) Traits without borders: integrating functional diversity across scales. Trends Ecol Evol 31:382–394. https://doi.org/10.1016/j.tree.2016.02.003 Catalan J, Donato Rondón JC (2016) Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J Limnol 75:215–234. https://doi.org/10.4081/jlimnol.2016.1372 Cattaneo A, Asioli A, Comoli P, Manca M (1998) Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr 43:1938–1943 Černý M, Bytel J (1991) Density and size distribution of Daphnia populations at different fish predation levels. Hydrobiologia 225:199–208 Chang K-H, Hanazato T (2003) Vulnerability of cladoceran species to predation by the copepod Mesocyclops leuckarti: laboratory observations on the behavioural interactions between predator and prey. Freshw Biol 48:476–484 Chapin F III, Zavaleta E, Eviner V et al (2000) Consequences of changing biodiversity. Nature 405:234–242 Choi JY, Kim SK, Chang KH et al (2014) Population growth of the cladoceran, Daphnia magna: a quantitative analysis of the effects of different algal food. PLoS One 9:1–8. https://doi.org/10.1371/journal.pone.0095591 Christofersen K, Riemann B, Klysner A, Sondergaard M (1993) Potential role of fish predation and natural populations zooplankton in structuring a plankton community in eutrophic lake water. Limnol Oceanogr 38:561–573 Cleuvers M, Goser B, Ratte H (1997) Life-strategy shift by intraspecific interaction in Daphnia magna: change in reproduction from quantity to quality. Oecologia 110:337–345 Coll M, Hargadon K (2012) Trophic and functional cascades in tropical versus temperate aquatic microcosms. Aquat Ecol 46:55–71. https://doi.org/10.1007/s10452-011-9381-9 Cruz-cisneros JL, Garcı L, Martı F (2008) A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments. Ecotoxocol Environ Saf 71:26–31. https://doi.org/10.1016/j.ecoenv.2008.05.005 Cyr H, Curtis JM (1999) Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118:306–315 Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793. https://doi.org/10.1073/pnas.0902080106 de Bello F, Lavorel S, Díaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. https://doi.org/10.1007/s10531-010-9850-9 Sodré EO, Figueiredo-Barros MP, Roland F et al (2017) Complimentary biodiversity measures applied to zooplankton in a recovering floodplain lake. Fundam Appl Limnol Arch für Hydrobiol 190:279–298. https://doi.org/10.1127/fal/2017/1064 DeMott WR, Gulati RD, Van Donk E (2001) Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol Oceanogr 46:2054–2060. https://doi.org/10.4319/lo.2001.46.8.2054 Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655 Dini ML, Carpenter SR (1992) Fish predators, food availability and diel vertical migration in Daphnia. J Plankton Res 14:359–377 Dumont HJ, Van De Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97 Dvoretskii VG, Dvoretskii AG (2009) Variability of morphological characteristics in Oithona similis (Copepoda: Cyclopoida) in the White Sea. Russ J Mar Biol 35:259–262. https://doi.org/10.1134/S1063074009030110 Elser JJ, Sterner RW, Gorokhova E et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550 Engert A, Chakrabarti S, Saul N et al (2013) Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum. Chemosphere 90:2136–2141. https://doi.org/10.1016/j.chemosphere.2012.10.099 Farjalla VF, Srivastava DS, Marino NAC et al (2012) Ecological determinism increases with organism size. Ecology 93:1752–1759 Feniova IY, Razlutsky VI, Palash AL (2011) Temperature effects of interspecies competition between cladoceran species in experimental conditions. Inl Water Biol 4:65–71. https://doi.org/10.1134/S1995082910041017 Ferrão-Filho AS, Arcifa MS, Fileto C (2003) Resource limitation and food quality for cladocerans in a tropical Brazilian lake. Hydrobiologia 491:201–210. https://doi.org/10.1023/A:1024496611829 Fileto C, Arcifa MS, Ferrão-Filho AS, Silva LHS (2004) Influence of phytoplankton fractions on growth and reproduction of tropical cladocerans. Aquat Ecol 38:503–514. https://doi.org/10.1007/s10452-004-4087-x Forró L, Korovchinsky NM, Kotov AA, Petrusek A (2008) Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595:177–184. https://doi.org/10.1007/s10750-007-9013-5 Frost PC, Evans-white MA, Finkel ZV et al (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28 Galiana N, Lurgi M, Montoya JM, López BC (2014) Invasions cause biodiversity loss and community simplification in vertebrate food webs. Oikos 123:721–728. https://doi.org/10.1111/j.1600-0706.2013.00859.x Gama-Flores JL, Huidobro-Salas ME, Sarma SSS, Nandini S (2011) Somatic and population growth responses of Ceriodaphnia dubia and Daphnia pulex (Cladocera) to changes in food (Chlorella vulgaris) level and temperature. J Environ Biol 32:489–495 Garzke J, Ismar SMH, Sommer U (2015) Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia 177:849–860. https://doi.org/10.1007/s00442-014-3130-4 Gauthier J, Prairie YT, Beisner BE (2014) Thermocline deepening and mixing alter zooplankton phenology, biomass and body size in a whole-lake experiment. Freshw Biol 59:998–1011. https://doi.org/10.1111/fwb.12322 Gerasimova TN, Pogozhev PI (2002) Reduction of the trophic status of a water body with the use of large-size zooplankton. Water Resour 29:412–421 Ghadouani A, Pinel-Alloul B, Prepas EE (2006) Could increased cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Can J Fish Aquat Sci 63:2308–2317. https://doi.org/10.1139/f06-117 Gianuca AT, Pantel JH, De Meester L (2016) Disentangling the effect of body size and phylogenetic distances on zooplankton top-down control of algae. Proc Biol Sci. https://doi.org/10.1098/rspb.2016.0487 Giebelhausen B, Lampert W (2001) Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshw Biol 46:281–289 Gillooly JF, Dodson S (2000) Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol Oceanogr 45:22–30. https://doi.org/10.4319/lo.2000.45.1.0022 Gliwicz ZM, Boavida MJ (1996) Clutch size and body-size at first reproduction in Daphnia pulicaria at different levels of food and predation. J Plankton Res 18:863–880 Gliwicz ZM, Umana G (1994) Cladoceran body size and vulnerability to copepod preation. Limnol Oceanogr 39:419–424 Gliwicz ZM, Szymanska E, Wrzosek D (2010) Body size distribution in Daphnia populations as an effect of prey selectivity by planktivorous fish. Hydrobiologia 643:5–19. https://doi.org/10.1007/s10750-010-0125-y Gomes LF, Pereira HR, Gomes ACAM et al (2019) Zooplankton functional-approach studies in continental aquatic environments: a systematic review. Aquat Ecol. https://doi.org/10.1007/s10452-019-09682-8 Green J (1967) The distribution and variation of Daphnia lumholtzi (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa. J Zool 151:181–197 Greene CH (1983) Selective predation in freshwater zooplankton communities. Int Rev Hydrobiol 68:297–315 Gu L, Lyu K, Dai Z et al (2017) Predator-specific responses of Moina macrocopa to kaironmones from different fishes. Int Rev Hydrobiol 102:83–89. https://doi.org/10.1002/iroh.201601872 Guisande C (1993) Reproductive strategy as population density varies in Daphnia magna (Cladocera). Freshw Biol 29:463–467 Gusha MNC, Dalu T, Wasserman RJ, Mcquaid CD (2019) Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Sci Total Environ 651:410–418. https://doi.org/10.1016/j.scitotenv.2018.09.132 Gusso-Choueri PK, Choueri RB, Lombardi AT, Melão MGG (2012) Effects of dietary copper on life-history traits of a tropical freshwater cladoceran. Arch Environ Contam Toxicol 62:589–598. https://doi.org/10.1007/s00244-011-9725-4 Gutiérrez MF, Paggi JC, Gagneten AM (2010) Fish kairomones alter life cycle and growth of a calanoid copepod. J Plankton Res 32:47–55. https://doi.org/10.1093/plankt/fbp095 Hart RC, Bychek EA (2011) Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668:61–108. https://doi.org/10.1007/s10750-010-0400-y Havens KE, Hanazato T (1993) Zooplankton community responses to chemical stressors: a comparison of results from acidification and pesticide contamination research. Environ Pollut 82:277–288. https://doi.org/10.1016/0269-7491(93)90130-G Havens KE, Pinto-Coelho RM, Beklioğlu M et al (2015) Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics. Hydrobiologia 743:27–35. https://doi.org/10.1007/s10750-014-2000-8 Hébert M-P, Beisner BE, Maranger R (2016a) A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton. Ecology 97:1081. https://doi.org/10.1890/15-1275 Hébert M-P, Beisner BE, Maranger R (2016b) A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology 97:1069–1080. https://doi.org/10.1007/s13398-014-0173-7.2 Hébert M-P, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39:3–12. https://doi.org/10.1093/plankt/fbw068 Hellsten ME, Stenson JAE (1995) Cyclomorphosis in a population of Bosmina coregoni. Hydrobiologia 312:1–9. https://doi.org/10.1007/BF00018881 Higgins SCN, Althouse B, Devlin SP et al (2014) Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95:2257–2267 Hillebrand H, Cowles JM, Lewandowska A et al (2014) Think ratio! A stoichiometric view on biodiversity—ecosystem functioning research. Basic Appl Ecol 15:465–474. https://doi.org/10.1016/j.baae.2014.06.003 Hofmann S, Timofeyev MA, Putschew A et al (2012) Leaf litter leachates have the potential to increase lifespan, body size, and offspring numbers in a clone of Moina macrocopa. Chemosphere 86:883–890. https://doi.org/10.1016/j.chemosphere.2011.10.041 Hooper D, Iii FC, Ewel J et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35 Hopcroft RR, Roff JC, Webber MK, Witt JDS (1998) Zooplankton growth rates: the influence of size and resources in tropical marine copepodites. Mar Biol 132:67–77 Horne CR, Hirst AG, Atkinson D et al (2016) A global synthesis of seasonal temperature—size responses in copepods. Glob Ecol Biogeogr 25:988–999. https://doi.org/10.1111/geb.12460 Horne CR, Hirst AG, Atkinson D, Hirst AG (2017) Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc R Soc B Biol Sci 284:9. https://doi.org/10.1098/rspb.2017.0238 Huang X, Shi X, Xu S et al (2011) Life history characteristics of Macrothrix rosea (Jurine, 1820) (Cladocera, Macrothricidae) in laboratory conditions. J Limnol 70:248–254. https://doi.org/10.3274/JL11-70-2-13 Huebner JD, Loadman NL, Wiegand MD et al (2013) UVB Radiation affects growth, reproduction and tissue structure of Daphnia magna across several temperatures. Photochem Photobiol 89:103–110. https://doi.org/10.1111/j.1751-1097.2012.01197.x Hwang JS, Kumar R, Kuo CS (2009) Impacts of predation by the copepod, Mesocyclops pehpeiensis, on life table demographics and population dynamics of four cladoceran species: a comparative laboratory study. Zool Stud 48:738–752 Hylander S, Grenvald JC, Kiørboe T (2014) Fitness costs and benefits of ultraviolet radiation exposure in marine pelagic copepods. Funct Ecol 28:149–158. https://doi.org/10.1111/1365-2435.12159 Isari S, Saiz E (2011) Feeding performance of the copepod Clausocalanus lividus (Frost and Fleminger, 1968). J Plankton Res 33:715–728. https://doi.org/10.1093/plankt/fbq149 Isari S, Antó M, Saiz E (2013) Copepod foraging on the basis of food nutritional quality: can copepods really choose? PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0084742 Jankowski T (2004) Predation of freshwater jellyfish on Bosmina: the consequences for population dynamics, body size, and morphology. Hydrobiologia 530–531:521–528. https://doi.org/10.1007/s10750-004-2648-6 Jansen M, De Meester L, Cielen A et al (2011) The interplay of past and current stress exposure on the water flea Daphnia. Funct Ecol 25:974–982. https://doi.org/10.1111/j.1365-2435.2011.01869.x Jeppesen E, Jensen JP, Amsinck S et al (2002) Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. J Paleolimnol 27:133–143. https://doi.org/10.1023/A:1013561208488 Jónasdóttir SH, Visser AW, Richardson K, Heath MR (2015) Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–12126. https://doi.org/10.1073/pnas.1512110112 Josué IIP, Cardoso SJ, Miranda M et al (2019) Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia 831:149–161. https://doi.org/10.1007/s10750-018-3710-0 Kappes H, Sinsch U (2002) Temperature- and predator-induced phenotypic plasticity in Bosmina cornuta and B. pellucida (Crustacea: Cladocera). Freshw Biol 47:1944–1955. https://doi.org/10.1046/j.1365-2427.2002.00943.x Kasprzak P, Lathrop RC, Carpenter SR (1999) Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. J Plankton Res 21:2161–2174 Kelly S, Grenyer R, Scotland RW (2014) Phylogenetic trees do not reliably predict feature diversity. Divers Distrib 20:600–612. https://doi.org/10.1111/ddi.12188 Kiørboe T (2010) What makes pelagic copepods so successful? J Plankton Res 33:677–685. https://doi.org/10.1093/plankt/fbq159 Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x Klein Breteler WCM, Gonzalez SR (1982) Influence of cultivation and food concentration on body length of calanoid copepods. Mar Biol 71:157–161. https://doi.org/10.1007/BF00394624 Kořínek V (2002) Cladocera. In: Fernando CH (ed) A guide to tropical freshwater zooplankton. Backhuys Publishers, Leiden, p 291 Korosi JB, Paterson AM, Desellas AM, Smol JP (2010) A comparison of pre-industrial and present-day changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Can J Fish Aquat Sci 67:754–762. https://doi.org/10.1139/F10-013 Korosi JB, Kurek J, Smol JP (2013) A review on utilizing Bosmina size structure archived in lake sediments to infer historic shifts in predation regimes. J Plankton Res 35:444–460. https://doi.org/10.1093/plankt/fbt007 Koski M, Dutz J, Breteler WK et al (2010) Seasonal changes in food quantity and quality of the common North Sea copepods Temora longicornis and Pseudocalanus elongatus: a bioassay approach. Mar Ecol Prog Ser 399:141–155. https://doi.org/10.3354/meps08357 Koussoroplis AM, Wacker A (2016) Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits. Ecol Lett 19:143–152. https://doi.org/10.1111/ele.12546 Kozlowski J, Czarnoleski M, Danko M (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr Comp Biol 44:480–493. https://doi.org/10.1093/icb/44.6.480 Kruk C, Huszar VLM, Peeters ETHM et al (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627. https://doi.org/10.1111/j.1365-2427.2009.02298.x Kulkarni D, Gergs A, Hommen U et al (2013) A plea for the use of copepods in freshwater ecotoxicology. Environ Sci Pollut Res 20:75–85. https://doi.org/10.1007/s11356-012-1117-4 Kumar RAM, Rao TR (1999) Effect of Algal Food on animal prey consumption rates in the omnivorous copepod, mesocyclops thermocyclopoides. Int Rev Hydrobiol 85:419–426 Labaj AL, Kurek J, Smol JP (2014) Chaoborus americanus predation influences Bosmina mucro lengths in fishless lakes. J Paleolimnol 51:449–454. https://doi.org/10.1007/s10933-013-9751-5 Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305 Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Funct Ecol 3:21–27 Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167 Lee HW, Ban S, Ikeda T, Matsuishi T (2003) Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J Plankton Res 25:261–271. https://doi.org/10.1093/plankt/25.3.261 Lepš J, De Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia (Prague) 78:481–501 Li C, Yang G, Ning J et al (2013) Response of copepod grazing and reproduction to different taxa of spring bloom phytoplankton in the Southern Yellow Sea. Deep Res Part II 97:101–108. https://doi.org/10.1016/j.dsr2.2013.05.018 Litchman E, Ohman MD, Kiorboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484. https://doi.org/10.1093/plankt/fbt019 Lopes PM, Bozelli R, Bini LM et al (2016) Contributions of airborne dispersal and dormant propagule recruitment to the assembly of rotifer and crustacean zooplankton communities in temporary ponds. Freshw Biol 61:658–669. https://doi.org/10.1111/fwb.12735 Magurran AE (2004) Measuring biological diversity. Blackwell Publishing Ltd, Oxford Makino W, Ban S (2000) Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol Oceanogr 45:396–407. https://doi.org/10.4319/lo.2000.45.2.0396 Manca M, Vijverberg J, Polishchuk LV, Voronov DA (2008) Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. J Limnol 67:15–21. https://doi.org/10.4081/jlimnol.2008.15 Mason N, Mouillot D, Lee W, Wilson J (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 1:112–118 Mazel F, Mooers AO, Riva GVD, Pennell MW (2017) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst Biol 66:1019–1027. https://doi.org/10.1093/sysbio/syx054 Mazel F, Pennell MW, Cadotte MW et al (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-05126-3 McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002 Melle W, Runge J, Head E et al (2014) The North Atlantic Ocean as habitat for Calanus finmarchicus: environmental factors and life history traits. Prog Oceanogr 129:244–284. https://doi.org/10.1016/j.pocean.2014.04.026 Moore M, Folt C (1993) Zooplankton body size and community structure: effects of thermal and toxicant stress. Tree 8:178. https://doi.org/10.1016/0169-5347(93)90144-E Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6:e17476. https://doi.org/10.1371/journal.pone.0017476 Nandini S, Alonso-Soto R, Sarma SSS (2013) Growth of plankton (Scenedesmus acutus (chlorophyceae) and Moina macracopa (cladocera)) on domestic wastewater. Clean Soil Air Water 41:11–15. https://doi.org/10.1002/clen.201000305 Nevalainen L, Rantala MV, Luoto TP (2015) Sedimentary cladoceran assemblages and their functional attributes record late Holocene climate variability in southern Finland. J Paleolimnol 54:239–252. https://doi.org/10.1007/s10933-015-9849-z Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364. https://doi.org/10.1111/j.1523-1739.1990.tb00309.x O’Brien WJ (2001) Long-term impact of an invertebrate predator, Heterocope septentrionalis, on an arctic pond zooplankton community. Freshw Biol 46:39–45 Padial AA, Ceschin F, Declerck SAJ et al (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9:1–8. https://doi.org/10.1371/journal.pone.0111227 Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19. https://doi.org/10.1007/s10750-008-9645-0 Pajk F, Zhang J, Han BP, Dumont HJ (2018) Thermal reaction norms of a subtropical and a tropical species of Diaphanosoma (cladocera) explain their distribution. Limnol Oceanogr 63:1204–1220. https://doi.org/10.1002/lno.10766 Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411. https://doi.org/10.1046/j.1461-0248.2002.00339.x Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x Pieters BJ, Liess M (2006) Maternal nutritional state determines the sensitivity of Daphnia magna offspring to short-term Fenvalerate exposure. Aquat Toxicol 76:268–277. https://doi.org/10.1016/j.aquatox.2005.09.013 Pinto-Coelho RM, Bezerra-Neto JF, Miranda F et al (2008) The inverted trophic cascade in tropical plankton communities: impacts of exotic fish in the Middle Rio Doce lake district, Minas Gerais, Brazil. Braz J Biol 68:1025–1037 Pla L, Casanoves F, Di Rienzo J (2012) Functional groups. Quantifying functional biodiversity. Springer, Amsterdam, pp 9–25 Polishchuk LV, Vijverberg J (2005) Contribution analysis of body mass dynamics in Daphnia. Oecologia 144:268–277. https://doi.org/10.1007/s00442-005-0072-x Poos MS, Walker SC, Jackson DA (2009) Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90:341–347 Primicerio R (2003) Size-dependent habitat choice in Daphnia galeata Sars and size-structured interactions among zooplankton in a subarctic lake (lake Lombola, Norway). Aquat Ecol 37:107–122. https://doi.org/10.1023/A:1023942931825 Raisuddin S, Kwok KWH, Leung KMY et al (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173. https://doi.org/10.1016/j.aquatox.2007.04.005 Rao TR, Kumar R (2002) Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat Ecol 36:411–424 Rejas D, Muylaert K (2010) Bottom-up and top-down control of phytoplankton growth in an Amazonian várzea lake. Fundam Appl Limnol 176:225–234. https://doi.org/10.1127/1863-9135/2010/0176-0225 Rejas D, Declerck S, Auwerkerken J et al (2005) Plankton dynamics in a tropical floodplain lake: fish, nutrients, and the relative importance of bottom–up and top–down control. Freshw Biol 50:52–69. https://doi.org/10.1111/j.1365-2427.2004.01306.x Repka S (1997) Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria *. Freshw Biol 38:675–683. https://doi.org/10.1046/j.1365-2427.1997.00236.x Reynolds C, Huszar V, Kruk C et al (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428 Rice E, Dam HG, Stewart G (2015) Impact of climate change on estuarine zooplankton: surface water warming in long island sound is associated with changes in copepod size and community structure. Estuaries Coasts 38:13–23. https://doi.org/10.1007/s12237-014-9770-0 Rizo EZC, Gu Y, Papa RDS et al (2017) Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799:1–17. https://doi.org/10.1007/s10750-017-3199-y Rodgher S, Teresa A, Grac M et al (2009) Evaluation onto life cycle parameters of Ceriodaphnia silvestrii submitted to 36 days dietary copper exposure. Ecotoxicol Environ Saf 72:1748–1753. https://doi.org/10.1016/j.ecoenv.2009.03.009 Rosado B, Dias A, de Mattos E (2013) Going back to basics: importance of ecophysiology when choosing functional traits for studying communities and ecosystems. Nat Conserv 11:15–22 Saiz E, Calbet A (2007) Scaling of feeding in marine calanoid copepods. Limnol Oceanogr 52:668–675. https://doi.org/10.4319/lo.2007.52.2.0668 Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196. https://doi.org/10.1007/s10750-010-0421-6 Sakamoto M, Hanazato ÆT, Tanaka Y (2009) Impact of an insecticide on persistence of inherent antipredator morphology of a small Cladoceran, Bosmina. Arch Environ Contam Toxicol 57:68–76. https://doi.org/10.1007/s00244-008-9247-x San Martin E, Harris RP, Irigoien X (2006) Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Res Part II Top Stud Oceanogr 53:1560–1572. https://doi.org/10.1016/j.dsr2.2006.05.006 Santangelo JM, Soares BN, Paes T et al (2018) Effects of vertebrate and invertebrate predators on the life history of Daphnia similis and Moina macrocopa (Crustacea: Cladocera). Ann Limnol Int J Limnol 54:6. https://doi.org/10.1051/limn/2018015 Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333. https://doi.org/10.1007/s10750-004-3247-2 Sarma SSS, Peredo-Alvarez VM, Nandini S (2007) Comparative study of the sensitivities of neonates and adults of selected cladoceran (Cladocera: Crustacea) species to acute toxicity stress. J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 43:1449–1452. https://doi.org/10.1080/10934520701480839 Sarma SS, Garcia-Garcia G, Nadini S, Saucedi-Campos AD (2017) Effects of anti-diabetic pharmaceuticals to non-target species in freshwater ecosystems: a review. J Environ Biol 38:1249–1254 Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51:691–702. https://doi.org/10.1093/icb/icr097 Sebastian P, Stibor H, Berger S, Diehl S (2012) Effects of water temperature and mixed layer depth on zooplankton body size. Mar Biol 159:2431–2440. https://doi.org/10.1007/s00227-012-1931-8 Segan DB, Murray KA, Watson JEM (2016) A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions. Glob Ecol Conserv 5:12–21. https://doi.org/10.1016/j.gecco.2015.11.002 Sell AF (2000) Morphological defenses induced in situ by the invertebrate predator Chaoborus: comparison of responses between Daphnia pulex and D. rosea. Oecologia 125:150–160 Slusarczyk M (2001) Food threshold for diapause in Daphnia. Ecology 82:1089–1096 Soininen J, Korhonen JJ, Luoto M (2013) Stochastic species distributions are driven by organism size. Ecology 94:660–670 Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661. https://doi.org/10.1111/j.1365-2745.2011.01945.x Stamieszkin K, Pershing AJ, Record NR et al (2015) Size as the master trait in modeled copepod fecal pellet carbon flux. Limnol Oceanogr 60:2090–2107. https://doi.org/10.1002/lno.10156 Stearns SC (1976) Life-history tactics: a review of the deas. Q Rev Biol 51:3–47 Steinberg DK, Landry MR (2017) Zooplankton and the ocean carbon cycle. Ann Rev Mar Sci 9:413–444. https://doi.org/10.1146/annurev-marine-010814-015924 Suchman CL (2000) Escape behavior of Acartia hudsonica copepods during interactions with scyphomedusae. J Plankton Res 22:2307–2323. https://doi.org/10.1093/plankt/22.12.2307 Suhett AL, Steinberg CEW, Santangelo JM et al (2011) Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environ Sci Pollut Res Int 18:1004–1014. https://doi.org/10.1007/s11356-011-0455-y Suhett AL, Santangelo JM, Bozelli RL et al (2015) An overview of the contribution of studies with cladocerans to environmental stress research. Acta Limnol Bras 27:145–159 Tamelander T, Aubert AB, Riser CW (2012) Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus. Mar Ecol Progess Ser 459:17–28. https://doi.org/10.3354/meps09733 Tanaka Y (2012) Trait response in communities to environmental change: effect of interspecific competition and trait covariance structure. Theor Ecol 5:83–98. https://doi.org/10.1007/s12080-010-0100-2 Tanaka Y, Mano H (2012) Functional traits of herbivores and food chain efficiency in a simple aquatic community model. Ecol Model 237–238:88–100. https://doi.org/10.1016/j.ecolmodel.2012.04.021 Teuber L, Hagen W, Bode M, Auel H (2019) Who is who in the tropical Atlantic? Functional traits, ecophysiological adaptations and life strategies in tropical calanoid copepods. Prog Oceanogr 171:128–135. https://doi.org/10.1016/j.pocean.2018.12.006 Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121 Thompson PL, Davies TJ, Gonzalez A (2015) Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLoS One 10:e0117595. https://doi.org/10.1371/journal.pone.0117595 Tilman D (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. https://doi.org/10.1126/science.277.5330.1300 Tollrian R (1995) Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia Pulex. Ecology 76:1691–1705 Tsuda A, Saito H, Kasai H (2001) Geographical variation of body size of Neocalanus cristatus, N. plumchrus and N. flemingeri in the subarctic pacific and its marginal seas: implications for the origin of the large form of N. flemingeri in the Oyashio area. J Oceanogr 57:341–352 Twombly S, Tisch N (2000) Body size regulation in copepod crustaceans. Oecologia 122:318–326. https://doi.org/10.1007/s004420050037 Vesela S, Vijverberg ÆJ (2007) Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species. Aquat Ecol 41:67–73. https://doi.org/10.1007/s10452-006-9050-6 Viitasalo M, Koski M, Pellikka K, Johansson S (1995) Seasonal and long-term variations in the body size of planktonic copepods in the northern Baltic Sea. Mar Biol 123:241–250. https://doi.org/10.1007/BF00353615 Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x Violle C, Reich PB, Pacala SW et al (2014) The emergence and promise of functional biogeography. Proc Natl Acad Sci 111:13690–13696. https://doi.org/10.1073/pnas.1415442111 Vogt RJ, Peres-Neto PR, Beisner BE (2013) Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122:1700–1709. https://doi.org/10.1111/j.1600-0706.2013.00039.x Wang H, Sterner RW, Elser JJ (2012) On the “strict homeostasis” assumption in ecological stoichiometry. Ecol Model 243:81–88. https://doi.org/10.1016/j.ecolmodel.2012.06.003 White MM, Mclaren IA (2000) Copepod development rates in relation to genome size and 18S rDNA copy number. Genome 43:750–755 Yan ND, Somers KM, Girard RE et al (2008) Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can J Fish Aquat Sci 65:862–877. https://doi.org/10.1139/f07-197 Yang EJ, Ju S-J, Choi J-K (2010) Feeding activity of the copepod Acartia hongi on phytoplankton and micro-zooplankton in Gyeonggi Bay, Yellow Sea. Estuar Coast Shelf Sci 88:292–301. https://doi.org/10.1016/j.ecss.2010.04.005 Ye L, Chang C, Garcı C et al (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1060. https://doi.org/10.1111/1365-2656.12067 Yen J, Murphy DW, Fan L, Webster DR (2015) Sensory-motor systems of copepods involved in their escape from suction feeding. Integr Comp Biol 55:121–133. https://doi.org/10.1093/icb/icv051 Zaret TM (1980) Predation and freshwater communities. Yale University Press, New Haven and London Zaret TM, Kerfoot WC (1975) Fish predation on Bosmina longirostris: body-Size selection versus visibility selection. Ecology 56:232–237