Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vai trò của bộ nhớ làm việc trong kỹ năng toán học của trẻ nhỏ: Vai trò trung gian của xử lý số cơ bản
Tóm tắt
Nghiên cứu hiện tại đã điều tra sự liên quan của từng thành phần trong mô hình bộ nhớ làm việc đối với hiệu suất toán học của trẻ em mẫu giáo. Tổng cộng có 103 trẻ em mẫu giáo người Trung Quốc đã tham gia các bài kiểm tra về bệ hình không gian, vòng lặp ngữ âm, điều hành trung tâm và xử lý số cơ bản (tức là, ước lượng số trên trục số, ước lượng số lượng phi ngôn ngữ và so sánh độ lớn số học). Kết quả cho thấy, trong ba thành phần của bộ nhớ làm việc, điều hành trung tâm chiếm một tỷ lệ đáng kể trong biến thiên của hiệu suất toán học ở trẻ nhỏ. Về xử lý số cơ bản, ước lượng số trên trục số và so sánh độ lớn số học có ảnh hưởng đáng kể đến hiệu suất toán học của trẻ nhỏ. Hơn nữa, so sánh độ lớn số học đóng vai trò trung gian giữa bệ hình không gian và các kỹ năng toán học sớm. Những phát hiện này nhấn mạnh tầm quan trọng của bộ nhớ làm việc và xử lý số cơ bản trong các kỹ năng toán học sớm và tiết lộ các con đường khác nhau mà ba thành phần bộ nhớ làm việc ảnh hưởng đến hiệu suất toán học của trẻ nhỏ.
Từ khóa
#bộ nhớ làm việc #kỹ năng toán học #xử lý số cơ bản #trẻ em mẫu giáo #hiệu suất toán họcTài liệu tham khảo
Ai, J., Yang, J., Zhang, T., Si, J., & Liu, Y. (2017). The effect of central executive load on fourth and sixth graders’ use of arithmetic strategies. Psychologica Belgica, 57(2), 154–172. https://doi.org/10.5334/pb.360
Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: a general or specific deficit? Journal of Experimental Child Psychology, 96(3), 197–228. https://doi.org/10.1016/j.jecp.2006.10.001
Ansari, D., Donlan, C., & Karmiloff-Smith, A. (2007). Typical and atypical development of visual estimation abilities. Cortex, 43(6), 758–768. https://doi.org/10.1016/S0010-9452(08)70504-5
Baddeley, A. (2010). Working memory. Current Biology, 20(4), 136–140. https://doi.org/10.1016/j.cub.2009.12.014
Baddeley, A., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (pp. 47–90). Academic Press.
Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12–28. https://doi.org/10.1016/j.jecp.2013.08.010
Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99(4), 288–308. https://doi.org/10.1016/j.jecp.2007.12.002
Bergman-Nutley, S., & Klingberg, T. (2014). Effect of working memory training on working memory, arithmetic and following instructions. Psychological Research, 78(6), 869–877. https://doi.org/10.1007/s00426-014-0614-0
Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 15(3), 421–442. https://doi.org/10.1080/87565649909540759
Butterworth, B. (2003). Dyscalculia screener. London: nferNelson.
Chen, E. H., & Bailey, D. H. (2021). Dual-task studies of working memory and arithmetic performance: A meta-analysis. Journal of Experimental Psychology: Learning Memory and Cognition, 47(2), 220–233. https://doi.org/10.1037/xlm0000822
Cheng, D., Ma, M., Hu, Y., & Zhou, X. (2021). Chinese kindergarteners skilled in mental abacus have advantages in spatial processing and attention. Cognitive Development, 58, 101046. https://doi.org/10.1016/j.cogdev.2021.101046
Corso, L. V., & Dorneles, B. V. (2018). Working memory, number sense, and arithmetical performance. Psicologia Teoria E Prática, 20(1), 155–167. https://doi.org/10.5935/19806906/psicologia.v20n1p155-167
Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12–26. https://doi.org/10.1016/j.cognition.2017.01.014
Cui, J., Georgiou, G. K., Zhang, Y., Li, Y., Shu, H., & Zhou, X. (2017). Examining the relationship between rapid automatized naming and arithmetic fluency in Chinese kindergarten children. Journal of Experimental Child Psychology, 154, 146–163. https://doi.org/10.1016/j.jecp.2016.10.008
Cui, J. X., Xiao, R., Ma, M., Yuan, L., Cohen Kodash, R., & Zhou, X. (2020). Children skilled in mental abacus show enhanced non-symbolic number sense. Current Psychology. Advance online publication. https://doi.org/10.1007/s12144-020-00717-0
D’Amico, A., & Guarnera, M. (2005). Exploring working memory in children with low arithmetical achievement. Learning & Individual Differences, 15(3), 189–202. https://doi.org/10.1016/j.lindif.2005.01.002
De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: Are the phonological loop and central executive involved? Memory and Cognition, 29, 267–273. https://doi.org/10.3758/BF03194920
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1), 1–42. 10. 1016/0010–0277(92)90049-N
DeStefano, D., & LeFevre, J.-A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353–386. https://doi.org/10.1080/09541440244000328
Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003
Friso-van den Bos, I., Kroesbergen, E. H., & Van Luit, J. E. H. (2014). Number sense in kindergarten children: Factor structure and working memory predictors. Learning & Individual Differences, 33, 23–29. https://doi.org/10.1016/j.lindif.2014.05.003
Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97, 493–513. https://doi.org/10.1037/0022-0663.97.3.493
Fung, W. Y. (2015). Working memory components as predictors of word problem solving: does rapid automatized naming speed mediate the relationship? (Doctor Dissertations). University of California.
Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition, 28(5), 774–782. https://doi.org/10.3758/BF03198412
Göbel, S. M., Watson, S. E., Lervag, A., & Hulme, C. (2014). Children's arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), Article 789. https://doi.org/10.1177/0956797613516471
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433
Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends. Current Psychology of Cognition, 13, 207–245. https://doi.org/10.1006/brln.1994.1027
Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving. Memory & Cognition, 30(3), 447–455. https://doi.org/10.3758/BF03194945
Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology, 79(2), 192–227. https://doi.org/10.1006/jecp.2000.2586
Holmes, J., & Adams, J. W. (2006). Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366. https://doi.org/10.1080/01443410500341056
Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272–289. https://doi.org/10.1080/09541440701612702
Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, Article 272. https://doi.org/10.3389/fpsyg.2014.00272
Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25(2), 95–103. https://doi.org/10.1016/j.learninstruc.2012.12.001
Lefevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2020). Effects of visual training of approximate number sense on auditory number sense and school math ability. Frontiers in Psychology, 11, Article 2085. https://doi.org/10.3389/fpsyg.2020.02085
Matejko, A. A., & Ansari, D. (2019). The neural association between arithmetic and basic numerical processing depends on arithmetic problem size and not chronological age. Developmental Cognitive Neuroscience, 37, Article 100653. https://doi.org/10.1016/j.dcn.2019.100653
Mckenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educational & Child Psychology, 20(3), 93–108. https://doi.org/10.1037/0022-0663.98.1.29
Moll, K., Göbel, S. M., & Snowling, M. J. (2015). Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders. Child Neuropsychology, 21(3), 399–417. https://doi.org/10.1080/09297049.2014.899570
Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7th ed.). Muthén & Muthén.
National Bureau of Statistics of the People’s Republic of China. (2020). Annual by Province: People’s living conditions. Retrieved November 1, 2021, from https://data.stats.gov.cn/english/easyquery.htm?cn=E0103
Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning & Instruction, 23, 125–135. https://doi.org/10.1016/j.learninstruc.2012.08.004
Olkun, S., & Denizli, Z. A. (2015). Using basic number processing tasks in determining students with mathematics disorder risk. Düşünen Adam Journal of Psychiatry & Neurological Sciences, 28(1), 47–57. https://doi.org/10.5350/DAJPN2015280105
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning & Individual Differences, 20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. https://doi.org/10.1111/j.1467-8624.2004.00684.x
Simmons, F. R., & Singleton, C. (2010). Do weak phonological representations impact on arithmetic development? a review of research into arithmetic and dyslexia. Dyslexia, 14(2), 77–94. https://doi.org/10.1002/dys.341
Smedt, B. D., Reynvoet, B., Swillen, A., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Basic number processing and difficulties in single-digit arithmetic: Evidence from velo-cardio-facial syndrome. Cortex, 45(2), 177–188. https://doi.org/10.1016/j.cortex.2007.06.003
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhardt (Ed.), Sociological methodology 1982 (pp. 290–312). American Sociological Association.
State Council of the People’s Republic of China. (2020). National per capita disposable income by 2020. Retrieved November 1, 2021, from http://www.gov.cn/guoqing/202104/09/content_559866 2.htm
Swanson, & Kim, K. (2007). Working memory, short-term memory, and naming speed as predictors of children’s mathematical performance. Intelligence, 35(2), 151–168. https://doi.org/10.1016/j.intell.2006.07.001
Träff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116(2), 139–156. https://doi.org/10.1016/j.jecp.2013.04.007
Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics: Cognitive correlates of advanced mathematics. British Journal of Educational Psychology, 82(1), 157–181. https://doi.org/10.1111/j.2044-8279.2011.02049.x
Xenidou-Dervou, I., van Lieshout, E. C. D. M., & Schoot, M. V. D. (2014). Working memory in nonsymbolic approximate arithmetic processing: A dual-task study with preschoolers. Cognitive Science, 38(1), 101–127. https://doi.org/10.1111/cogs.12053
Yang, X., & McBride, C. (2020). How do phonological processing abilities contribute to early Chinese reading and mathematics? Educational Psychology, 40(7), 893–911. https://doi.org/10.1080/01443410.2020.1771679
Yang, X., Chung, K. K. H., & Mcbride, C. (2019). Longitudinal contributions of executive functioning and visual-spatial skills to mathematics learning in young Chinese children. Educational Psychology, 39(5), 678–704. https://doi.org/10.1080/01443410.2018.1546831
Yang, X., Zhang, X., Huo, S., & Zhang, Y. (2020). Differential contributions of cognitive precursors to symbolic versus non-symbolic numeracy in young Chinese children. Early Childhood Research Quarterly, 53, 208–216. https://doi.org/10.1016/j.ecresq.2020.04.003
Zhang, Y., Chen, C., Liu, H., Cui, J., & Zhou, X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7), 807–824. https://doi.org/10.1080/20445911.2016.1205074
