How Strong Is the Evidence for a Causal Reciprocal Effect? Contrasting Traditional and New Methods to Investigate the Reciprocal Effects Model of Self-Concept and Achievement
Tóm tắt
The relationship between students’ subject-specific academic self-concept and their academic achievement is one of the most widely researched topics in educational psychology. A large proportion of this research has considered cross-lagged panel models (CLPMs), oftentimes synonymously referred to as reciprocal effects models (REMs), as the gold standard for investigating the causal relationships between the two variables and has reported evidence of a reciprocal relationship between self-concept and achievement. However, more recent methodological research has questioned the plausibility of assumptions that need to be satisfied in order to interpret results from traditional CLPMs causally. In this substantive-methodological synergy, we aimed to contrast traditional and more recently developed methods to investigate reciprocal effects of students’ academic self-concept and achievement. Specifically, we compared results from CLPMs, full-forward CLPMs (FF-CLPMs), and random intercept CLPMs (RI-CLPMs) with two weighting approaches developed to study causal effects of continuous treatment variables. To estimate these different models, we used rich longitudinal data of N = 3757 students from lower secondary schools in Germany. Results from CLPMs, FF-CLPMs, and weighting methods supported the reciprocal effects model, particularly when math self-concept and grades were considered. Results from the RI-CLPMs were less consistent. Implications from our study for the interpretation of effects from the different models and methods as well as for school motivation theory are discussed.
Tài liệu tham khảo
Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton Univ. Press.
Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., & vom Hofe, R. (2017). Math self-concept, grades, and achievement test scores: Long-term reciprocal effects across five waves and three achievement tracks. Journal of Educational Psychology, 109(5), 621–634. https://doi.org/10.1037/edu0000163
Bailey, D. H., Oh, Y., Farkas, G., Morgan, P., & Hillemeier, M. (2020). Reciprocal effects of reading and mathematics? Beyond the cross-lagged panel model. Developmental Psychology, 56(5), 912–921. https://doi.org/10.1037/dev0000902
Baumert J., Roeder P., Gruehn S., Heyn S., Köller O., Rimmele R. (1996). Bildungsverläufe und psychosoziale Entwicklung im Jugendhalter [Educational Careers and Psychological Development in Adolescents and Young Adulthood]. In Treumann K.-P., Neubauer G., Möller R., Abel J. (Eds.), Methoden und Anwendungen empirischer pädagogischer Forschung (pp. 170–180). Waxmann.
Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workhorse. Child Development, 88(4), 1186–1206. https://doi.org/10.1111/cdev.12660
Brunner, M., Keller, U., Dierendonck, C., Reichert, M., Ugen, S., Fischbach, A., & Martin, R. (2010). The structure of academic self-concepts revisited: The nested Marsh/Shavelson model. Journal of Educational Psychology, 102(4), 964–981. https://doi.org/10.1037/a0019644
Bryan, C. J., Tipton, E., & Yeager, D. S. (2021). Behavioural science is unlikely to change the world without a heterogeneity revolution. Nature Human Behaviour, 5(8), 980–989. https://doi.org/10.1038/s41562-021-01143-3
Bundesamt, S. (2010). Statistisches Jahrbuch für die Bundesrepublik Deutschland [Statistical Yearbook for the Federal Republic of Germany]. Statistisches Bundesamt.
Burns, R. A., Crisp, D. A., & Burns, R. B. (2020). Re-examining the reciprocal effects model of self-concept, self-efficacy, and academic achievement in a comparison of the cross-lagged panel and random-intercept cross-lagged panel frameworks. British Journal of Educational Psychology, 90(1), 77–91. https://doi.org/10.1111/bjep.12265
Calsyn, R. J., & Kenny, D. A. (1977). Self-concept of ability and perceived evaluation of others: Cause or effect of academic achievement? Journal of Educational Psychology, 69(2), 136–145. https://doi.org/10.1037/0022-0663.69.2.136
Chmielewski, A. K., Dumont, H., & Trautwein, U. (2013). Tracking effects depend on tracking type. American Educational Research Journal, 50(5), 925–957. https://doi.org/10.3102/0002831213489843
Cole, S. R., & Hernán, M. A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168(6), 656–664. https://doi.org/10.1093/aje/kwn164
Cook, T. D., Shadish, W. R., & Wong, V. C. (2008). Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons. Journal of Policy Analysis and Management, 27(4), 724–750. https://doi.org/10.1002/pam.20375
Cook, T. D., Steiner, P. M., & Pohl, S. (2009). How bias reduction is affected by covariate choice, unreliability, and mode of data analysis: Results from two types of within-study comparisons. Multivariate Behavioral Research, 44(6), 828–847. https://doi.org/10.1080/00273170903333673
Cunningham, S. (2021). Causal inference: The mixtape. Yale University Press.
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82(5), 879–894. https://doi.org/10.1037/a0035297
Ehm, J.-H., Hasselhorn, M., & Schmiedek, F. (2019). Analyzing the developmental relation of academic self-concept and achievement in elementary school children: Alternative models point to different results. Developmental Psychology, 55(11), 2336–2351. https://doi.org/10.1037/dev0000796
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics, 12(1), 156–177. https://doi.org/10.1214/17-AOAS1101
Fong, C., Ratkovic, M., Imai, K., Hazlett, C., Yang, X., & Peng, S. (2021). Package CBPS: Covariate balancing propensity score. https://CRAN.R-project.org/package=CBPS
Gische, C., West, S. G., & Voelkle, M. C. (2021). Forecasting causal effects of interventions versus predicting future outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 475–492. https://doi.org/10.1080/10705511.2020.1780598
Greifer, N. (2021a). Package cobalt: Covariate balance tables and plots. https://cran.r-project.org/web/packages/cobalt/cobalt.pdf
Greifer, N. (2021b). Package WeightIt: Matching and weighting multiply imputed datasets. https://cran.r-project.org/web/packages/WeightIt/WeightIt.pdf
Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Political Analysis, 20(1), 25–46. https://doi.org/10.1093/pan/mpr025
Hallquist, M. N., & Wiley, J. F. (2018). Mplusautomation: An R package for facilitating large-scale latent variable analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 621–638. https://doi.org/10.1080/10705511.2017.1402334
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889
Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. Psychological Methods, 25(3), 365–379. https://doi.org/10.1037/met0000239
Hecht, M., & Zitzmann, S. (2021). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 894–902. https://doi.org/10.1080/10705511.2021.1914627
Helmke, A., & van Aken, M. A. G. (1995). The causal ordering of academic achievement and self-concept of ability during elementary school: A longitudinal study. Journal of Educational Psychology, 87(4), 624–637. https://doi.org/10.1037/0022-0663.87.4.624
Hernán, M. A., & Robins, J. M. (2020). Causal inference: What if. Chapman & Hall/CRC.
Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. In A. Gelman & X.-L. Meng (Eds.), Applied bayesian modeling and causal inference from incomplete-data perspectives (pp. 73–84). Wiley. https://doi.org/10.1002/0470090456.ch7
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396), 945. https://doi.org/10.2307/2289064
Hoyle, R. H. (Ed.). (2012). Handbook of structural equation modeling. Guilford Press.
Huang, C. (2011). Self-concept and academic achievement: A meta-analysis of longitudinal relations. Journal of School Psychology, 49(5), 505–528. https://doi.org/10.1016/j.jsp.2011.07.001
Hübner, N., Spengler, M., Nagengast, B., Borghans, L., Schils, T., & Trautwein, U. (2022). When academic achievement (also) reflects personality: Using the personality-achievement saturation hypothesis (PASH) to explain differential associations between achievement measures and personality traits. Journal of Educational Psychology, 114(2), 326–345. https://doi.org/10.1037/edu0000571
Hübner, N., Trautwein, U., & Nagengast, B. (2021). Should I stay or should I go? Predictors and effects of studying abroad during high school. Learning and Instruction, 71, 101398. https://doi.org/10.1016/j.learninstruc.2020.101398
Hübner, N., Wille, E., Cambria, J., Oschatz, K., Nagengast, B., & Trautwein, U. (2017). Maximizing gender equality by minimizing course choice options? Effects of obligatory coursework in math on gender differences in STEM. Journal of Educational Psychology, 109(7), 993–1009. https://doi.org/10.1037/edu0000183
Imai, K., King, G., & Stuart, E. A. (2008). Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society: Series a (Statistics in Society), 171(2), 481–502. https://doi.org/10.1111/j.1467-985X.2007.00527.x
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 243–263. https://doi.org/10.1111/rssb.12027
Jonkmann, K., Rose, N., & Trautwein, U. (2013). Tradition und Innovation: Entwicklungsverläufe an Haupt- und Realschulen in Baden-Württemberg und Mittelschulen in Sachsen: Abschlussbericht für die Länder Baden-Württemberg und Sachsen. [Tradition and Innovation: Student development at low- and intermediate-track schools in Baden-Württemberg and comprehensive track schools in Saxony: Final report for Baden-Württemberg and Saxony]. Hector Research Institute of Education Sciences and Psychology.
Kang, J., Chan, W., Kim, M.-O., & Steiner, P. M. (2016). Practice of causal inference with the propensity of being zero or one: Assessing the effect of arbitrary cutoffs of propensity scores. Communications for Statistical Applications and Methods, 23(1), 1–20. https://doi.org/10.5351/CSAM.2016.23.1.001
Khorramdel, L., von Davier, M., Gonzalez, E., & Yamamoto, K. (2020). Plausible values: Principles of item response theory and multiple imputations. In D. B. Maehler & B. Rammstedt (Eds.), Methodology of Educational Measurement and Assessment. Large-Scale Cognitive Assessment (pp. 27–47). Springer International Publishing. https://doi.org/10.1007/978-3-030-47515-4_3
Lechner, C. M., Bhaktha, N., Groskurth, K., & Bluemke, M. (2021). Why ability point estimates can be pointless: A primer on using skill measures from large-scale assessments in secondary analyses. Measurement Instruments for the Social Sciences, 3(1). https://doi.org/10.1186/s42409-020-00020-5
Lehmann, R. H., & Lenkeit, J. (2008). ELEMENT. Erhebung zum Lese- und Mathematikverständnis - Entwicklungen in den Jahrgangsstufen 4 bis 6 in Berlin. Abschlussbericht über die Untersuchungen 2003, 2004 und 2005 an Berliner Grundschulen und grundständigen Gymnasien. Survey for reading and mathematics literacy. Development in grades 4 to 6 in Berlin. Final research report on the surveys in 2003, 2004, and 2005 in primary schools and undergraduate academic tracks in Berlin. Humboldt-Universität zu Berlin.
Leyrat, C., Seaman, S. R., White, I. R., Douglas, I., Smeeth, L., Kim, J., Resche-Rigon, M., Carpenter, J. R., & Williamson, E. J. (2019). Propensity score analysis with partially observed covariates: How should multiple imputation be used? Statistical Methods in Medical Research, 28(1), 3–19. https://doi.org/10.1177/0962280217713032
Lüdtke, O., & Robitzsch, A. (2021). A critique of the random intercept cross-lagged panel model. PsyArXiv.. https://doi.org/10.31234/osf.io/6f85c
Lüdtke, O., & Robitzsch, A. (2022). A comparison of different approaches for estimating cross-lagged effects from a causal inference perspective. Structural Equation Modeling: A Multidisciplinary Journal, 29(6), 88–907. https://doi.org/10.1080/10705511.2022.2065278
Lumley, T. (2018). Package ‘survey’. https://cran.r-project.org/web/packages/survey/survey.pdf
Marsh, H. W. (1990a). Causal ordering of academic self-concept and academic achievement: A multiwave, longitudinal panel analysis. Journal of Educational Psychology, 82(4), 646–656. https://doi.org/10.1037/0022-0663.82.4.646
Marsh, H. W. (1990b). The structure of academic self-concept: The Marsh/Shavelson model. Journal of Educational Psychology, 82(4), 623–636. https://doi.org/10.1037/0022-0663.82.4.623
Marsh, H. W. (1992). Self description questionnaire (SDQ) III: A theoretical and empirical basis for the Measurement of multiple dimensions of late adolescent self-concept: A test manual and a research monograph. Macarthur, New South Wales, Australia: University of Western Sydney, Faculty of Education.
Marsh, H. W., Byrne, B. M., & Yeung, A. S. (1999). Causal ordering of academic self-concept and achievement: Reanalysis of a pioneering study and. Educational Psychologist, 34(3), 155–167. https://doi.org/10.1207/s15326985ep3403_2
Marsh, H. W., & Craven, R. G. (2006). Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspectives on Psychological Science, 1(2), 133–163. https://doi.org/10.1111/j.1745-6916.2006.00010.x
Marsh, H. W., & Hau, K.-T. (2007). Applications of latent-variable models in educational psychology: The need for methodological-substantive synergies. Contemporary Educational Psychology, 32(1), 151–170. https://doi.org/10.1016/j.cedpsych.2006.10.008
Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. British Journal of Educational Psychology, 81, 59–77. https://doi.org/10.1348/000709910X503501
Marsh, H. W., Martin, A. J., Yeung, A. S., & Craven, R. (2016). Competence self-perceptions. In A. J. Elliot, C. S. Dweck, & D. Yeager (Eds.), Handbook of competence and motivation (pp. 85–115). Guilford Press.
Marsh, H. W., Pekrun, R., & Lüdtke, O. (2022). Directional ordering of self-concept, school grades, and standardized tests over five years: New tripartite models juxtaposing within- and between-person perspectives. Educational Psychology Review, 34, 2697–2744. https://doi.org/10.1007/s10648-022-09662-9
Marsh, H. W., Pekrun, R., Murayama, K., Arens, A. K., Parker, P. D., Guo, J., & Dicke, T. (2018). An integrated model of academic self-concept development: Academic self-concept, grades, test scores, and tracking over 6 years. Developmental Psychology, 54(2), 263–280. https://doi.org/10.1037/dev0000393
Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76(2), 397–416. https://doi.org/10.1111/j.1467-8624.2005.00853.x
McNeish, D., & Wolf, M. G. (2021). Dynamic fit index cutoffs for confirmatory factor analysis models. In Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000425
Möller, J., Pohlmann, B., Köller, O., & Marsh, H. W. (2009). A meta-analytic path analysis of the internal/external frame of reference model of academic achievement and academic self-concept. Review of Educational Research, 79(3), 1129–1167. https://doi.org/10.3102/0034654309337522
Möller, J., Zitzmann, S., Helm, F., Machts, N., & Wolff, F. (2020). A meta-analysis of relations between achievement and self-concept. Review of Educational Research, 90(3), 376–419. https://doi.org/10.3102/0034654320919354
Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638–648. https://doi.org/10.1080/10705511.2020.1784738
Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus user’s guide (8th ed.). Muthén & Muthén.
Niepel, C., Marsh, H. W., Guo, J., Pekrun, R., & Möller, J. (2021). Revealing dynamic relations between mathematics self-concept and perceived achievement from lesson to lesson: An experience-sampling study. Journal of Educational Psychology, 114(6), 1380–1393. https://doi.org/10.1037/edu0000716
Núñez-Regueiro, F., Juhel, J., Bressoux, P., & Nurra, C. (2021). Identifying reciprocities in school motivation research: A review of issues and solutions associated with cross-lagged effects models. Journal of Educational Psychology, 114(5), 945–965. https://doi.org/10.1037/edu0000700
O'Mara, A. J., Marsh, H. W., Craven, R. G., & Debus, R. L. (2006). Do self-concept interventions make a difference? A synergistic blend of construct validation and meta-analysis. Educational Psychologist, 41(3), 181–206. https://doi.org/10.1207/s15326985ep4103_4
Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology, 120(4), 1013–1034. https://doi.org/10.1037/pspp0000358
Orth, U., Meier, L. L., Bühler, J. L., Dapp, L. C., Krauss, S., Messerli, D., & Robins, R. W. (2022). Effect size guidelines for cross-lagged effects. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000499
Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge Univ. Press.
Pearl, J. (2010). On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? Epidemiology, 21(6), 872–875. https://doi.org/10.1097/EDE.0b013e3181f5d3fd
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley. http://lib.myilibrary.com/detail.asp?ID=895561
Penk, C., Pöhlmann, C., & Roppelt, A. (2014). The role of test-taking motivation for students’ performance in low-stakes assessments: An investigation of school-track-specific differences. Large-Scale Assessments in Education, 2(1), 1–17. https://doi.org/10.1186/s40536-014-0005-4
Pinxten, M., de Fraine, B., van Damme, J., & D'Haenens, E. (2010). Causal ordering of academic self-concept and achievement: Effects of type of achievement measure. British Journal of Educational Psychology, 80, 689–709. https://doi.org/10.1348/000709910X493071
Pishgar, F., Greifer, N., Leyrat, C., & Stuart, E. (2020). Package MatchThem: Matching and weighting multiply imputed datasets. https://cran.r-project.org/web/packages/MatchThem/MatchThem.pdf
Pishgar, F., Greifer, N., Leyrat, C., & Stuart, E. (2021). MatchThem: Matching and weighting after multiple imputation. The R Journal, 13(2), 292–305. https://journal.r-project.org/archive/2021/RJ-2021-073/index.html
Preckel, F., Schmidt, I., Stumpf, E., Motschenbacher, M., Vogl, K., & Schneider, W. (2017). A test of the reciprocal-effects model of academic achievement and academic self-concept in regular classes and special classes for the gifted. Gifted Child Quarterly, 61(2), 103–116. https://doi.org/10.1177/0016986216687824
R Development Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.R-project.org
Rehkopf, D. H., Glymour, M. M., & Osypuk, T. L. (2016). The consistency assumption for causal inference in social epidemiology: When a rose is not a rose. Current Epidemiology Reports, 3(1), 63–71. https://doi.org/10.1007/s40471-016-0069-5
Robitzsch, A., Grund, S., & Henke, T. (2021). Package ‘miceadds’. https://cran.r-project.org/web/packages/miceadds/miceadds.pdf
Rogosa, D. (1980). A critique of cross-lagged correlation. Psychological Bulletin, 88(2), 245–258. https://doi.org/10.1037/0033-2909.88.2.245
Rose, N., Jonkmann, K., Hübner, N., Sälzer, C., Lüdtke, O., & Nagy, G. (2013). Durchführung und methodische Grundlagen der TRAIN-Studie [Implementation and methodological foundations of the TRAIN study]. In K. Jonkmann, N. Rose, & U. Trautwein (Eds.), Tradition und Innovation: Entwicklungsverläufe an Haupt- und Realschulen in Baden-Württemberg und Mittelschulen in Sachsen: Abschlussbericht für die Länder Baden-Württemberg und Sachsen (pp. 77–102). Hector Research Institute of Education Sciences and Psychology.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. https://doi.org/10.2307/2335942
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701. https://doi.org/10.1037/h0037350
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley.
Rubin, D. B. (2004). Teaching statistical inference for causal effects in experiments and observational studies. Journal of Educational and Behavioral Statistics, 29(3), 343–367. https://doi.org/10.3102/10769986029003343
Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized studies: A practical guide and simulated example. Psychological Methods, 13(4), 279–313. https://doi.org/10.1037/a0014268
Schwanzer, A. D., Trautwein, U., Lüdtke, O., & Sydow, H. (2005). Entwicklung eines Instruments zur Erfassung des Selbstkonzepts junger Erwachsener. Diagnostica, 51(4), 183–194. https://doi.org/10.1026/0012-1924.51.4.183
Seaton, M., Marsh, H. W., Parker, P. D., Craven, R. G., & Yeung, A. S. (2015). The reciprocal effects model revisited. Gifted Child Quarterly, 59(3), 143–156. https://doi.org/10.1177/0016986215583870
Sewasew, D., Schroeders, U., Schiefer, I. M., Weirich, S., & Artelt, C. (2018). Development of sex differences in math achievement, self-concept, and interest from grade 5 to 7. Contemporary Educational Psychology, 54, 55–65. https://doi.org/10.1016/j.cedpsych.2018.05.003
Shadish, W. R. (2010). Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings. Psychological Methods, 15(1), 3–17. https://doi.org/10.1037/a0015916
Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008). Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random and nonrandom assignments. Journal of the American Statistical Association, 103(484), 1334–1344. https://doi.org/10.1198/016214508000000733
Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-concept: Validation of construct interpretations. Review of Educational Research, 46(3), 407–441. https://doi.org/10.3102/00346543046003407
Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453. https://doi.org/10.3102/00346543075003417
Steyer, R. (2001). Classical (psychometric) test theory. In C. Ragin & T. Cook (Eds.), International encyclopedia of the social & behavioral sciences. Logic of inquiry and research design (pp. 481–520). Elsevier. https://doi.org/10.1016/B0-08-043076-7/00721-X
Thoemmes, F., & Kim, E. S. (2011). A systematic review of propensity score methods in the social sciences. Multivariate Behavioral Research, 46(1), 90–118. https://doi.org/10.1080/00273171.2011.540475
Thoemmes, F., & Ong, A. D. (2016). A primer on inverse probability of treatment weighting and marginal structural models. Emerging Adulthood, 4(1), 40–59. https://doi.org/10.1177/2167696815621645
Tipton, E., & Olsen, R. B. (2018). A review of statistical methods for generalizing from evaluations of educational interventions. Educational Researcher, 47(8), 516–524. https://doi.org/10.3102/0013189X18781522
Tübbicke, S. (2021). Entropy balancing for continuous treatments. Journal of Econometric Methods, 11(1), 71–89. https://doi.org/10.1515/jem-2021-0002
Uchida, A., Michael, R. B., & Mori, K. (2018). An induced successful performance enhances student self-efficacy and boosts academic achievement. AERA Open, 4(4). https://doi.org/10.1177/2332858418806198
Usami, S. (2021). On the differences between general cross-lagged panel model and random-intercept cross-lagged panel model: Interpretation of cross-lagged parameters and model choice. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 331–344. https://doi.org/10.1080/10705511.2020.1821690
Usami, S., Hayes, T., & McArdle, J. J. (2015). On the mathematical relationship between latent change score and autoregressive cross-lagged factor approaches: Cautions for inferring causal relationship between variables. Multivariate Behavioral Research, 50(6), 676–687. https://doi.org/10.1080/00273171.2015.1079696
Usami, S., Murayama, K., & Hamaker, E. L. (2019a). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24(5), 637–657. https://doi.org/10.1037/met0000210
Usami, S., Todo, N., & Murayama, K. (2019b). Modeling reciprocal effects in medical research: Critical discussion on the current practices and potential alternative models. PloS One, 14(9), 1–26. https://doi.org/10.1371/journal.pone.0209133
Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: A meta-analytic review. Educational Psychologist, 39(2), 111–133. https://doi.org/10.1207/s15326985ep3902\textunderscore
Vanderweele, T. J. (2019). Principles of confounder selection. European Journal of Epidemiology, 34(3), 211–219. https://doi.org/10.1007/s10654-019-00494-6
Vanderweele, T. J., & Hernán, M. A. (2013). Causal inference under multiple versions of treatment. Journal of Causal Inference, 1(1), 1–20. https://doi.org/10.1515/jci-2012-0002
Vanderweele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-wide longitudinal designs for causal inference: A new template for empirical studies. Statistical Science, 35(3), 437–466. https://doi.org/10.1214/19-STS728
Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53(6), 782–805. https://doi.org/10.1080/00273171.2018.1496813
Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174–1204. https://doi.org/10.1037/a0036620
Watt, H. M., Hyde, J. S., Petersen, J., Morris, Z. A., Rozek, C. S., & Harackiewicz, J. M. (2017). Mathematics—a critical filter for STEM-related career choices? A longitudinal examination among Australian and U.S. adolescents. Sex Roles, 77, 254–271. https://doi.org/10.1007/s11199-016-0711-1
Watt, H. M., Shapka, J. D., Morris, Z. A., Durik, A. M., Keating, D. P., & Eccles, J. S. (2012). Gendered motivational processes affecting high school mathematics participation, educational aspirations, and career plans: A comparison of samples from Australia, Canada, and the United States. Developmental Psychology, 48(6), 1594–1611. https://doi.org/10.1037/a0027838
West, S. G., & Thoemmes, F. (2010). Campbell’s and Rubin’s perspectives on causal inference. Psychological Methods, 15(1), 18–37. https://doi.org/10.1037/a0015917
Wu, H., Guo, Y., Yang, Y., Zhao, L., & Guo, C. (2021). A meta-analysis of the longitudinal relationship between academic self-concept and academic achievement. Educational Psychology Review, 33, 1749–1778. https://doi.org/10.1007/s10648-021-09600-1
Wylie, R. C. (1979). The self-concept: Theory and research on selected topics (2nd ed.). University of Nebraska Press.
Zhao, Q., & Percival, D. (2017). Entropy balancing is doubly robust. Journal of Causal Inference, 5(1), 20160010. https://doi.org/10.1515/jci-2016-0010
Zyphur, M. J., Voelkle, M. C., Tay, L., Allison, P. D., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2020). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods, 23(4), 688–716. https://doi.org/10.1177/1094428119847280