How Do We Deal with Uncertain Information? Effects of Verbal and Visual Expressions of Uncertainty on Learning

Springer Science and Business Media LLC - Tập 34 Số 2 - Trang 1097-1131 - 2022
Manuela Glaser1, Dominik Lengyel2, Catherine Toulouse2, Stephan Schwan1
1Leibniz-Institut für Wissensmedien, Tübingen, Germany
2Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany

Tóm tắt

AbstractBased on the knowledge generation model for visual analytics including uncertainty propagation and human trust building (Sacha et al. 2016), the cognitive theory of multimedia learning (Mayer, 2014), the multimedia principle (Butcher, 2014), and previous studies on the effects of different uncertainty visualization styles, an integrated theoretical approach is proposed to examine the influence of different degrees of information uncertainty and different uncertainty visualization styles on processing pictures of two archeological reconstructions with accompanying audio explanations presented in a multimedia learning environment. A 4 × 3 design with condition (without uncertainty visualization vs. stop light colors vs. geometric contrast vs. both uncertainty visualizations) as the between-subjects factor and uncertainty value (uncertain vs. medium vs. certain) as the within-subject factor was used. The results showed that appearance of certain content, its uncertainty values, and their verbal scientific justifications were remembered better than uncertain ones. Furthermore, stop light colors enhanced the memory of uncertainty values compared to no uncertainty visualization and were better understood, discriminated, and transferred than geometric contrast. Geometric contrast decreased the memory of the appearance of uncertain architectural elements compared to no uncertainty visualization and was better than stop light colors regarding the memory of the appearance of certain architectural elements. The study integrates and extends existing theories by showing that certain contents are processed with higher priority than uncertain contents and that the multimedia effect is also valid for metainformation such as the uncertainties of contents. Finally, recommendations for designing learning material including uncertainty visualizations are given.

Từ khóa


Tài liệu tham khảo

Abd-El-Khalick, F., Myers, J. Y., Summers, R., Brunner, J., Waight, N., Wahbeh, N., Zeinedding, A. A., & Belarmino, J. (2017). A longitudinal analysis of the extent and manner of representations of nature of science in US high school biology and physics textbooks. Journal of Research in Science Teaching, 54(1), 82–120. https://doi.org/10.1002/tea.21339

Apollonio, F. I. (2016). Classification schemes for visualization of uncertainty in digital hypothetical reconstruction. In S. Münster, M. Pfarr-Harfst, P. Kuroczyński, & M. Ioannides (eds.), 3D research challenges in cultural heritage II (pp. 173–197). Springer. https://doi.org/10.1007/978-3-319-47647-6_9

Apollonio, F. I., & Giovannini, E. C. (2015). A paradata documentation methodology for the uncertainty visualization in digital reconstruction of CH artifacts. SCIRES-IT-SCIentific RESearch and Information Technology, 5(1), 1–24. https://doi.org/10.2423/i22394303v5n1p1

Bernardes, P., Madeira, J., Martins, M., & Meireles, J. (2012). The use of traditional and computer-based visualization in archeology: A user survey. The 13th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, https://doi.org/10.2312/PE/VAST/VAST12S/013-016

Blackwell, A. F. (2001). Pictorial representation and metaphor in visual language design. Journal of Visual Languages & Computing, 12(3), 223–252. https://doi.org/10.1006/jvlc.2001.0207

Boukhelifa, N., Bezerianos, A., & Isenberg, T. (2012). Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Transactions on Visualization and Computer Graphics, 18, 2769–2778. https://doi.org/10.1109/TVCG.2012.220

Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (ed.), The Cambridge handbook of multimedia learning (pp. 174–205). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.010

Correll, M., Moritz, D., & Heer, J. (2018). Value-suppressing uncertainty palettes. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–11). https://doi.org/10.1145/3173574.3174216

Crismore, A., & Vande Kopple, W. J. (1988). Readers’ learning from prose: The effects of hedges. Written Communication, 5(2), 184–202. https://doi.org/10.1177/0741088388005002004

Danielová, M., Kumke, H., & Peters, S. (2016). 3D reconstruction and uncertainty modelling using fuzzy logic of archaeological structures: Applied to the Temple of Diana in Nemi, Italy. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(3), 137–146. https://doi.org/10.3138/cart.51.3.3160

De Haan, F. (1999). Evidentiality and epistemic modality: Setting boundaries. Southwest Journal of Linguistics, 18(1), 83–101.

Erev, I., & Cohen, B. L. (1990). Verbal versus numerical probabilities: Efficiency, biases, and the preference paradox. Organizational Behavior and Human Decision Processes, 45, 1–18. https://doi.org/10.1016/0749-5978(90)90002-Q

Gershon, N. (1998). Visualization of an imperfect world. IEEE Computer Graphics and Application, 18, 43–45. https://doi.org/10.1109/38.689662

Gilbert, D. T. (1991). How Mental Systems Believe. American Psychologist, 46(2), 107–119. https://doi.org/10.1037/0003-066X.46.2.107

Glaser, M., & Schwan, S. (2019). Processing textual and visual certainty information about digital architectural models. Computers in Human Behavior, 96, 141–148. https://doi.org/10.1016/j.chb.2019.02.023

Griethe, H. & Schumann, H. (2005). Visualizing uncertainty for improved decision making. Proceedings of the 4th International Conference on Perspectives in Business Informatics Research, University of Skovde, Sweden.

Gustafson, A., & Rice, R. E. (2020). A review of the effects of uncertainty in public science communication. Public Understanding of Science, 29(6), 614–633. https://doi.org/10.1177/0963662520942122

Holmes, J. (1988). Doubt and certainty in ESL textbooks. Applied Linguistics, 9(1), 21–44. https://doi.org/10.1093/applin/9.1.21

Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public Opinion Quarterly, 15(4), 635–650. https://doi.org/10.1086/266350

Hyland, K. (1996). Talking to the academy: Forms of hedging in science research articles. Written Communication, 13(2), 251–281. https://doi.org/10.1177/0741088396013002004

Jensen, J. D. (2008). Scientific uncertainty in news coverage of cancer research: Effects of hedging on scientists’ and journalists’ credibility. Human Communication Research, 34(3), 347–369. https://doi.org/10.1111/j.1468-2958.2008.00324.x

Kampourakis, K., & McCain, K. (2020). Uncertainty. Oxford University Press. https://doi.org/10.1093/oso/9780190871666.001.0001

Kimmerle, J., Flemming, D., Feinkohl, I., & Cress, U. (2015). How laypeople understand the tentativeness of medical research news in the media: An experimental study on the perception of information about deep brain stimulation. Science Communication, 37(2), 173–189. https://doi.org/10.1177/1075547014556541

Kinkeldey, C., Schiewe, J., Gerstmann, H., Götze, C., Kit, O., Lüdeke, M., Taubenböck, H., & Wurm, M. (2015). Evaluating the use of uncertainty visualization for exploratory analysis of land cover change: A qualitative expert user study. Computers & Geosciences, 84, 46–53. https://doi.org/10.1016/j.cageo.2015.08.007

Kirschenbaum, S. S., & Arruda, J. E. (1994). Effects of graphic and verbal probability information on command decision making. Human Factors, 36, 406–418. https://doi.org/10.1177/001872089403600302

Kolenda, J., & Markiewicz, M. (2017). A medieval bishop’s palace in Milicz: 3D reconstruction as a method of a research hypotheses presentation. Studies in Digital Heritage, 1(2), 428–443. https://doi.org/10.14434/sdh.v1i2.23458

Kosara, R., Miksch, S., Hauser, H., Schrammel, J., Giller, V., & Tscheligi, M. (2002). Useful properties of semantic depth of field for better F+C visualization. In Proceedings of the symposium on Data Visualisation 2002 (pp. 205–210).

Lasswell, H. D. (1948). The structure and function of communication in society. In L. Bryson (Ed.), The communication of ideas (pp. 37–51). Harper.

Leitner, M., & Buttenfield, B. P. (2000). Guidelines for the display of attribute certainty. Cartography and Geographic Information Science, 27, 3–14. https://doi.org/10.1559/152304000783548037

Lengyel, D. & Toulouse, C. (2011). Darstellung von unscharfem Wissen in der Rekonstruktion historischer Bauten. In K. Heine, K. Rheidt, F. Henze, A. Riedel (eds.), Von Handaufmaß bis High Tech III. 3D in der historischen Bauforschung (pp. 182–186). Darmstadt/Mainz.

Lengyel, D., & Toulouse, C. (2015). The consecution of uncertain knowledge, hypotheses and the design of abstraction. Proceedings of the 20th International Conference on Cultural Heritage and New Technologies (pp. 1–16).

Lengyel, D. & Toulouse, C. (2021). Experiencing architectonic design processes through interactive virtual reality applications. In V. Cappellini (ed.), Electronic imaging & the visual arts: EVA 2021 (pp. 110–117). Florence. http://digital.casalini.it/9788859621591

Lenhard, W. & Lenhard, A. (2016). Computation of effect sizes. Retrieved from: https://www.psychometrica.de/effect_size.html. Psychometrica. DOI: https://doi.org/10.13140/RG.2.2.17823.92329

Lombardi, D., Nussbaum, E. M., & Sinatra, G. M. (2016). Plausibility judgments in conceptual change and epistemic cognition. Educational Psychologist, 51(1), 35–56. https://doi.org/10.1080/00461520.2015.1113134

MacEachren, A. M., Roth, R. E., O’Brien, J., Li, B., Swingley, D., & Gahegan, M. (2012). Visual semiotics & uncertainty visualization: An empirical study. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2496–2505. https://doi.org/10.1109/TVCG.2012.279

Mayer, R. E. (2014). The Cambridge handbook of multimedia learning (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369

Mayo, R., Schul, Y., & Burnstein, E. (2004). “I am not guilty” vs “I am innocent”: Successful negation may depend on the schema used for its encoding. Journal of Experimental Social Psychology, 40(4), 433–449. https://doi.org/10.1016/j.jesp.2003.07.008

Mayo, R., Schul, Y., & Rosenthal, M. (2014). If you negate, you may forget: Negated repetitions impair memory compared with affirmative repetitions. Journal of Experimental Psychology: General, 143(4), 1541–1552. https://doi.org/10.1037/a0036122

Mayweg-Paus, E., & Jucks, R. (2015). Evident or doubtful? How lexical hints in written information influence laypersons’ understanding of influenza. Psychology, Health & Medicine, 20(8), 989–996. https://doi.org/10.1080/13548506.2014.986139

Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720. https://doi.org/10.1002/tea.10105

Padilla, L. M., Creem-Regehr, S. H., Hegarty, M., & Stefanucci, J. K. (2018). Decision making with visualizations: A cognitive framework across disciplines. Cognitive Research: Principles and Implications, 3(1), 1–25. https://doi.org/10.1186/s41235-018-0120-9

Padilla, L., Kay, M., & Hullman, J. (2020). Uncertainty visualization. https://doi.org/10.31234/osf.io/ebd6r

Pandelaere, M., & Dewitte, S. (2006). Is this a question? Not for long. The statement bias. Journal of Experimental Social Psychology, 42(4), 525–531. https://doi.org/10.1016/j.jesp.2005.08.004

Radojčić, S. (2019). Hedges and boosters in university textbooks. In P. Vičič, N. Gajšt, & A. Plos (eds.), Conference Proceedings of the10th International Language Conference on “the Importance of Learning Professional Foreign Languages for Communication Between Cultures”, 20 and 21 September 2018, Celje, Slovenia (pp. 317–326). https://doi.org/10.18690/978-961-286-252-7.24

Richter, T., & Maier, J. (2017). Comprehension of multiple documents with conflicting information: A two-step model of validation. Educational Psychologist, 52(3), 148–166. https://doi.org/10.1080/00461520.2017.1322968

Sacha, D., Senaratne, H., Kwon, B. C., Ellis, G., & Keim, D. A. (2016). The role of uncertainty, awareness, and trust in visual analytics. IEEE Transactions on Visualization and Computer Graphics, 22(1), 240–249. https://doi.org/10.1109/TVCG.2015.2467591

Sanyal, J., Zhang, S., Bhattacharya, G., Amburn, P., & Moorhead, R. J. (2009). IEEE Transactions on Visualization and Computer Graphics, 15, 1209–1218. https://doi.org/10.1109/TVCG.2009.114

Schweizer, D. M. & Goodchild, M. F. (1992). Data quality and choropleth maps: An experiment with the use of color. Proceedings GIS/LIS 1992 (pp. 686–699). San Jose, California.

Sifniotis, M., Watten, P., Mania, K., & White, M. (2007). Influencing factors on the visualisation of archaeological uncertainty. Proceedings of the 8th International conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (pp. 79–85).

Skeels, M., Lee, B., Smith, G., & Robertson, G. G. (2010). Revealing uncertainty for information visualization. Information Visualization, 9, 70–81. https://doi.org/10.1057/ivs.2009.1

Spiegelhalter, D. (2017). Risk and uncertainty communication. Annual Review of Statistics and Its Application, 4, 31–60. https://doi.org/10.1146/annurev-statistics-010814-020148

Steffens, B., Britt, M. A., Braasch, J. L., Strømsø, H., & Bråten, I. (2014). Memory for scientific arguments and their sources: Claim–evidence consistency matters. Discourse Processes, 51(1–2), 117–142. https://doi.org/10.1080/0163853X.2013.855868

Strothotte, T., Masuch, M., & Isenberg, T. (1999). Visualizing knowledge about virtual reconstructions of ancient architecture. Proceedings Computer Graphics International (pp. 36–43). Los Alamitos, CA, The Computer Graphics Society, IEEE Computer Society. https://doi.org/10.1109/CGI.1999.777901

Teigen, K. H., & Brun, W. (2003). Verbal probabilities: A question of frame? Journal of Behavioral Decision Making, 16(1), 53–72. https://doi.org/10.1002/bdm.432

Thiebach, M., Mayweg-Paus, E., & Jucks, R. (2015). “Probably true” says the expert: How two types of lexical hedges influence students’ evaluation of scientificness. European Journal of Psychology of Education, 30(3), 369–384. https://doi.org/10.1007/s10212-014-0243-4

van der Bles, A. M., van der Linden, S., Freeman, A. L., Mitchell, J., Galvao, A. B., Zaval, L., & Spiegelhalter, D. J. (2019). Communicating uncertainty about facts, numbers and science. Royal Society Open Science, 6(5), 181870. https://doi.org/10.1098/rsos.181870

van der Wel, F. J. M., Hootsmans, R. M., & Ormeling, F. (1994). Visualization of data quality. In: A. M. MacEachren & D. R. Fraser Taylor (eds.), Visualization in modern cartography (pp. 313–331). Oxford: Pergamon. https://doi.org/10.1016/B978-0-08-042415-6.50023-5

Vold, E. T. (2006). Epistemic modality markers in research articles: A cross-linguistic and cross-disciplinary study. International Journal of Applied Linguistics, 16(1), 61–87. https://doi.org/10.1111/j.1473-4192.2006.00106.x

Windhager, F., Salisu, S., & Mayr, E. (2019). Exhibiting uncertainty: Visualizing data quality indicators for cultural collections. Informatics, 6(3), 29. https://doi.org/10.3390/informatics6030029

Xie, Z., Huang, S., Ward, M. O., & Rundensteiner, E. A. (2006). Exploratory visualization of multivariate data with variable quality. IEEE Symposium on Visual Analytics Science and Technology (pp. 183 – 190). Baltimore. https://doi.org/10.1109/VAST.2006.261424

Zipkin, D. A., Umscheid, C. A., Keating, N. L., Allen, E., Aung, K., Beyth, R., Kaatz, S., Mann, D. M., Sussman, J. B., Korenstein, D., Schardt, C., Nagi, A., Sloane, R., & Feldstein, D. A. (2014). Evidence-based risk communication: A systematic review. Annals of Internal Medicine, 161(4), 270–280. https://doi.org/10.7326/M14-0295