Household willingness to adopt a single-stage solar-supported hyper-thermophilic anaerobic biogas digester in Ghana
Tóm tắt
Sustainability of energy is key for quality life; thus, the use of clean energy at the household level warrants moving from fossil-based energy to modern forms like biogas. However, the joint interactive effect of household income, biogas usage and willingness to adopt a single-stage solar-supported hyper-thermophilic anaerobic biogas digester (SSHTABD) is not known. A cross-sectional survey was carried out to assess the willingness of residents of Elmina to adopt the SSHTABD. Stratified and simple random sampling techniques were used to select 219 respondents fitted into a complementary log–log regression model. Household willingness to adopt the SSHTABD was 86%. Among them are households not willing to use biogas but have high income and households willing to use biogas but have either low or high income are more likely to adopt the technology compared to households not willing to use biogas and have low income. Households not willing to use biogas, but have high income (OR = 1.725, confidence interval [CI] 0.803–3.706) and households willing to use biogas, but have low income (OR = 1.877, CI 1.103–3.188) compared to households willing to use biogas and have high income (OR = 1.725, CI 1.080–3.451) are more likely to adopt the technology as households not willing to use biogas and have low income. Additionally, households employed under the formal government sector, formal and informal private sectors are 40%, 136% and 103%, respectively, more likely to adopt the technology than those unemployed. The high willingness of households to adopt the technology calls for government to support households to own biogas digesters thus requires policy interventions and interdisciplinary research.
Tài liệu tham khảo
Armah FA, Ekumah B, Yawson DO, Odoi JO, Afitiri A-R, Nyieku FE (2019) Predictive probabilities of access to clean cooking: evidence from the demographic and health surveys in 31 Countries in Sub-Saharan Africa. Environ Justice. https://doi.org/10.1089/env.2019.0002
Makonese T, Ifegbesan AP, Rampedi IT (2018) Household cooking fuel use patterns and determinants across southern Africa: evidence from the demographic and health survey data. Energy Environ 29(1):29–48
Tong S (2019) Air Pollution and Disease Burden. The Lancet Planetary Health 3(2):e49-50. https://doi.org/10.1016/S2542-5196(18)30288-2
OECD I (2016) Energy and air pollution: world energy outlook special report 2016
Hansen C, Lund J, Treue T (2009) Neither fast, nor easy: the prospect of Reduced Emissions from Deforestation and Degradation (REDD) in Ghana. Int For Rev 11(4):439–455
Armah FA, Odoi JO, Luginaah I (2015) Indoor air pollution and health in Ghana: self-reported exposure to unprocessed solid fuel smoke. EcoHealth 12(2):227–243
Bensah EC, Brew-Hammond A (2010) Biogas technology dissemination in Ghana: history, current status, future prospects, and policy significance. Int J Energy Env 1(2):277–294
Rehfuess E, Organization WH (2006) Fuel for life: household energy and health
Amigun B, Sigamoney R, von Blottnitz H (2008) Commercialisation of biofuel industry in Africa: a review. Renew Sustain Energy Rev 12(3):690–711
Jan I, Akram W (2018) Willingness of rural communities to adopt biogas systems in Pakistan: critical factors and policy implications. Renew Sustain Energy Rev 81:3178–3185
Smith KR, Uma R, Kishore VVN, Zhang J, Joshi V, Khalil MAK (2000) Greenhouse implications of household stoves: an analysis for India. Annu Rev Energy Environ 25(1):741–763
Akinbami J-F, Ilori M, Oyebisi T, Akinwumi I, Adeoti O (2001) Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew Sustain Energy Rev 5(1):97–112
Ding W, Niu H, Chen J, Du J, Wu Y (2012) Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China. Appl Energy 97:16–23
Brouwer R, Falcão MP (2004) Wood fuel consumption in Maputo. Mozambique Biomass Bioenergy 27(3):233–245
Ifegbesan AP, Rampedi IT, Annegarn HJ (2016) Nigerian households’ cooking energy use, determinants of choice, and some implications for human health and environmental sustainability. Habitat Int 55:17–24
Amigun B, Musango JK, Stafford W (2011) Biofuels and sustainability in Africa. Renew Sustain Energy Rev 15(2):1360–1372
Karottki R, Schäffler J, Banks D (2001) Wind energy in South Africa-time to implement. Renew Energy World 5:87
Mwakaje AG (2008) Dairy farming and biogas use in Rungwe district, South-west Tanzania: a study of opportunities and constraints. Renew Sustain Energy Rev 12(8):2240–2252
Karekezi S (2002) Renewables in Africa—meeting the energy needs of the poor. Energy Policy 30(11–12):1059–1069
Mwirigi J, Balana BB, Mugisha J, Walekhwa P, Melamu R, Nakami S et al (2014) Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review. Biomass Bioenergy 70:17–25
Bryant IM (2019) Development of single-stage solar-supported hyper-thermophilic anaerobic reactor for biogas production and disinfection of black water: a pilot case study of Terterkessim slum, Elmina–Ghana
Fei Z, Yu ZG (2011) An analysis on present situation and consumption desire of clean energy in China’s rural area based on a survey of famer-households in six cities of five provinces. Power Syst Clean Energy 27:60–64
Miller G, Mobarak AM (2011) Intra-household externalities and low demand for a new technology: Experimental evidence on improved cookstoves. Unpubl Manuscr
Wang S, Liang W, Wang G, Lu H (2011) Analysis of farmers’ willingness to adopt small scale household biogas facilities. Zhongguo Shengtai Nongye XuebaoChinese J Eco-Agric 19(3):718–722
Jan I (2012) What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan. Renew Sustain Energy Rev 16(5):3200–3205
Puopiel F, Owusu-Ansah J (2014) Solid Waste Management in Ghana: the Case of Tamale Metropolitan Area. 4(17): 1–103
World Bank (2016) Monitoring Global Poverty: Report of the Commission on Global Poverty. The World Bank. Doi: https://doi.org/10.1596/978-1-4648-0961-3
Armah FA, Quansah R, Yawson DO, Abdul KL (2019) Assessment of self-reported adverse health outcomes of electronic waste workers exposed to xenobiotics in Ghana. Environ Justice. https://doi.org/10.1089/env.2018.0021
Aitkin MA, Aitkin M, Francis B, Hinde J (2005) Statistical modelling in GLIM 4, vol. 32. OUP Oxford
Fahrmeir L, Tutz G (2013) Multivariate statistical modelling based on generalized linear models. Springer
Armah FA, Ung M, Boamah SA, Luginaah I, Campbell G (2017) Out of the frying pan into the fire? Urban penalty of the poor and multiple barriers to climate change adaptation in Cambodia and Tanzania. J Environ Stud Sci 7(1):69–86
Walekhwa PN, Mugisha J, Drake L (2009) Biogas energy from family-sized digesters in Uganda: critical factors and policy implications. Energy Policy 37(7):2754–2762
van der Kroon B, Brouwer R, van Beukering PJH (2013) The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis. Renew Sustain Energy Rev 20:504–513
Kabir H, Yegbemey RN, Bauer S (2013) Factors determinant of biogas adoption in Bangladesh. Renew Sustain Energy Rev 28:881–889
Vögeli, Y., Riu, C., Gallardo, A., Diener, S., & Zurbrügg, C. (2014). Anaerobic Digestion of Biowaste in Developing Countries. Retrieved from http://www.eawag.ch/forschung/sandec/publikationen/swm/dl/biowaste.pdf.
Sheth C (2009) Biogas from waste and renewable resources: an introduction. Choice: current reviews for academic libraries 46. https://doi.org/10.1002/9783527632794.
Du J, Chen L, Li J, Zuo R, Yang X, Chen H, Tian S (2018) High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4grass (Pennisetum purpereum). Appl Energy 215:437–443. https://doi.org/10.1016/j.apenergy.2018.02.021
Wendland C (2008) Anerobic digestion of Blackwater and kitchen refuse anaerobic digestion of Blackwater. J Biosci. 12. http://www.gfeu.org.