Chiết xuất nước nóng từ củ cải khô rang áp suất làm giảm stress oxy hóa gan thông qua việc tăng cường Nrf2 ở chuột ăn chế độ ăn giàu chất béo

Springer Science and Business Media LLC - Tập 26 - Trang 1063-1069 - 2017
Seulki Kim1,2, Minji Woo1, Mijeong Kim1, Jeong Sook Noh3, Yeong Ok Song1
1Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
2Food Processing Research Center, Korean Food Research Institute, Seongnam, Republic of Korea
3Department of Food Science and Nutrition, Tongmyong University, Busan, Republic of Korea

Tóm tắt

Nghiên cứu này đã khảo sát tác dụng của củ cải khô rang áp suất (PRDR) đối với stress oxy hóa. Để chuẩn bị chiết xuất PRDR, củ cải khô (DR) được rang áp suất, nấu sôi và sau đó được sấy đông. Chuột được cho ăn chế độ ăn thông thường với việc uống nước cất (DW) (nhóm bình thường) hoặc chế độ ăn giàu chất béo với DW (nhóm đối chứng, CON), DR (nhóm DR, 237 mg/kg trọng lượng cơ thể/ngày) hoặc PRDR (nhóm PRDR, 237 mg/kg trọng lượng cơ thể/ngày) (n = 8 mỗi nhóm) trong 12 tuần. Mức độ peroxid hóa lipid gan ở các nhóm DR và PRDR thấp hơn so với nhóm CON, trong khi mức độ glutathione gan ở các nhóm này cao hơn (p < 0.05). Biểu hiện của yếu tố nhân (nguồn gốc hồng cầu 2)-giống 2 và các enzyme chống oxy hóa liên quan như catalase, glutathione S-transferase, và peroxidase là cao nhất trong nhóm PRDR (p < 0.05). Rõ ràng rằng củ cải góp phần làm giảm stress oxy hóa và quá trình rang áp suất có thể đóng góp tích cực vào hiệu ứng này.

Từ khóa

#củ cải khô #rang áp suất #stress oxy hóa #Nrf2 #enzyme chống oxy hóa #chuột #chế độ ăn giàu chất béo

Tài liệu tham khảo

Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. Biomed. Res. Int. 2014: 761264 (2014) Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox-and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 90: 1–37 (2016) Regoli F, Giuliani ME. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 93: 106–117 (2014) Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27–32 (1995) Azam S, Hadi N, Khan NU, Hadi SM. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol. in vitro 18: 555–561 (2004) Kapoor LD. Handbook of Ayurvedic medicinal plants: Herbal reference library. Vol. 2, CRC Press, Boca Raton, USA (2000) Beevi SS, Mangamoori LN, Dhand V, Ramakrishna DS. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L.. Foodborne Pathog. Dis. 6: 129–136 (2009) An SJ, Kim MK. Effect of dry powders, ethanol extracts and juices of radish and onion on lipid metabolism and antioxidative capacity in rats. Korean J. Nutr. 34: 513–524 (2001) Murillo G, Mehta RG. Cruciferous vegetables and cancer prevention. Nutr. Cancer 41: 17–28 (2001) Salah-Abbès JB, Abbès S, Abdel-Wahhab MA, Oueslati R. Raphanus sativus extract protects against Zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice. Toxicon. 53: 525–533 (2009) Salah‐Abbès JB, Abbès S, Ouanes Z, Houas Z, Abdel‐Wahhab MA, Bacha H, Oueslati R. Tunisian radish extract (Raphanus sativus) enhances the antioxidant status and protects against oxidative stress induced by zearalenone in Balb/c mice. J. Appl. Toxicol. 28: 6–14 (2008) Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89–143 (2003) Song YB, Choi JS, Lee JE, Noh JS, Kim MJ, Cho EJ, Song YO. The Antioxidant effect of hot water extract from the dried radish (Raphanus sativus L.) with pressurized roasting. J. Korean Soc. Food Sci. Nutr. 39: 1179–1186 (2010) Kitts DD, Chen XM, Jing H. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. J. Agric. Food Chem. 60: 6718–6727 (2012) Wu S, Hu J, Wei L, Du Y, Shi X, Zhang L. Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems. Food Chem. 148: 196–203 (2014) Reichardt N, Gniechwitz D, Steinhart H, Bunzel M, Blaut M. Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol. Nutr. Food Res. 53: 287–299 (2009) Hatani T, Edamatsu R, Hiramatsu M, Mori A, Fujta Y, Yasuhara T, Yoshida T, Okuda R. Effect of the interaction of tannins with Co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016–2021 (1989) Kato H, Lee IE, Cheyen NV, Kim SB, Hayse F. Inhibition of nitrosamine formation by nondialyzable melanoidins. J. Agric. Food Chem. 51: 1333–1339 (1987) Candan F, Sokme S. Effects of Rhus coriaria L. (Anacardiaceae) on lipid peroxidation and free radical scavenging activity. Phytother. Res. 18: 84–86 (2004) Sasazuki S, Inoue M, Hanaoka T, Yamamoto S, Sobue T, Tsugane S. Green tea consumption and subsequent risk of gastric cancer by subsite: the JPHC Study. Cancer Causes Control 15: 483–491 (2004) Ali SF, Lebel CP, Bondy SC. Reactive oxygen species formation as a biomaker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13: 637–648 (1991) Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radical Biol. Med. 16: 149–156 (1994) Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979) Ellman M. A spectrophotometric method for determination of reduced glutathione in tissues. Anal. Biochem. 74: 214–226 (1959) Jung K, Hong SH, Kim M, Han JS, Jang MS, Song YO. Antiatherogenic effects of Korean cabbage kimchi with added short arm octopus. Food Sci. Biotechnol. 24: 249–255 (2015) Kim S, Kim M, Song YB, Cho MK, Song YO. Development of low calorie roasted radish tea beverage with anti-oxidant activity. Food Sci. Biotechnol. 25: 113–118 (2016) Cioroi M. The antioxidant character of melanoidins. Czech J. Food Sci. 18: 103–105 (2000) Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid. Med. Cell. Longev. 2014: 908539 (2014) Šebeková K, Kupčová V, Schinzel R, Heidland A. Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis–amelioration by liver transplantation. J. Hepatol. 36: 66–71 (2002) Vijayakumar RS, Nalini SN. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep. 9: 105–110 (2004) Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radical Biol. Med. 36: 1208–1213 (2004) Leoncini E, Malaguti M, Angeloni C, Motori E, Fabbri D, Hrelia S. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway. J. Food Sci. 76: 175–181 (2011) Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340: 99–109 (2004) Bae R, Lee YK, Lee SK. Changes in nutrient levels of aqueous extracts from radish (Raphanus sativus L.) root during liquefaction by heat and non-heat processing. Korean J. Hortic. Sci. Technol. 30: 409–416 (2012) Takaya Y, Kondo Y, Furukawa T, Niwa M. Antioxidant constituents of radish sprout (Kaiware-Daikon), Raphanus sativus. J. Agric. Food Chem. 51: 8061–8066 (2003)