Host responses to alphavirus infection

Immunological Reviews - Tập 225 Số 1 - Trang 27-45 - 2008
Kate D. Ryman1, William B. Klimstra
1Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.

Tóm tắt

Summary: Members of the Alphavirus genus are classified into New World and Old World groups based upon their disease characteristics and primary areas of endemicity. The two groups exhibit noteworthy differences in pathogenesis during human infection, with Old World viruses primarily causing febrile and arthritogenic diseases and the New World viruses causing encephalitis. In this review, we summarize the major factors contributing to disease manifestations observed in murine models of alphavirus infection. We concentrate upon differences between particular viruses as they relate to interaction with myeloid lineage cells (particularly dendritic cells and macrophages), both in terms of virus replication efficiency and host cell responses to infection. In addition, we discuss the effects of mutations acquired during cell culture‐adaptation of alphaviruses upon our understanding of important factors in pathogenesis. Finally, we focus on the role of host innate immune responses, in particular the type I interferon (IFN‐α/β) system, in determining the permissivity of myeloid and other cell types. Recent contributions to the current understanding of identities and mechanisms of action of IFN‐α/β‐induced antiviral effectors in vitro and in vivo are also discussed.

Từ khóa


Tài liệu tham khảo

Griffin DE., 2001, Fields Virology, 917

10.3201/eid1305.070015

10.3201/eid1403.070906

10.3201/eid1401.070618

10.4269/ajtmh.1981.30.674

Tesh RB, 1999, Mayaro virus disease, an emerging mosquito-borne zoonosis in tropical South America, 28, 67

10.1055/s-2007-1024409

10.5694/j.1326-5377.1997.tb138872.x

10.5694/j.1326-5377.1998.tb116019.x

10.4269/ajtmh.1998.58.35

Strauss JH, 1994, The alphaviruses, gene expression, replication, and evolution, 58, 491

10.1016/S0092-8674(01)00302-6

10.1016/S1097-2765(02)00492-6

10.1016/0042-6822(84)90428-8

10.1128/JVI.67.4.1916-1926.1993

Lemm JA, 1993, Assembly of functional Sindbis virus RNA replication complexes, requirement for coexpression of P123 and P34, 67, 1905

Lemm JA, 1994, Polypeptide requirements for assembly of functional Sindbis virus replication complexes, a model for the temporal regulation of minus- and plus-strand RNA synthesis, 13, 2925

Shirako Y, 1994, Regulation of Sindbis virus RNA replication, uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis, 68, 1874

10.1016/0042-6822(81)90499-2

10.1017/S135583820101010X

10.1128/JVI.64.9.4162-4168.1990

10.1128/JVI.64.4.1639-1647.1990

Ventoso I, 2006, Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation, a strategy to overcome the antiviral effect of protein kinase PKR, 20, 87

Frolov I, 1994, Translation of Sindbis virus mRNA, effects of sequences downstream of the initiating codon, 68, 8111

10.1091/mbc.E05-02-0124

10.1007/3-540-27320-4_3

10.1016/S0149-7634(98)00010-4

Griffin DE., 1989, Molecular pathogenesis of Sindbis virus encephalitis in experimental animals, Adv Virus Res, 36, 255, 10.1016/S0065-3527(08)60587-4

10.1006/viro.1996.0508

10.1128/JVI.74.2.644-651.2000

Taylor RM, 1955, Sindbis virus, a newly recognized arthropod transmitted virus, 4, 844

McKnight KL, 1996, Deduced consensus sequence of Sindbis virus strain AR339, mutations contained in laboratory strains which affect cell culture and in vivo phenotypes, 70, 1981

10.1128/JVI.72.9.7357-7366.1998

10.1128/JVI.73.12.10387-10398.1999

10.1002/bjs.1800840707

Hotchkiss RS, 1997, Apoptosis in lymphoid and parenchymal cells during sepsis, findings in normal and T- and B-cell-deficient mice, 25, 1298

10.1056/NEJMra021333

Ryman KD, 2007, Early restriction of alphavirus replication and dissemination contributes to age‐dependent attenuation of systemic hyperinflammatory disease, J Gen Virol, 88, 518, 10.1099/vir.0.82359-0

10.1006/viro.1999.9913

Tucker PC, 1993, Viral determinants of age‐dependent virulence of Sindbis virus for mice, J Virol, 67, 4605, 10.1128/jvi.67.8.4605-4610.1993

10.1093/infdis/133.4.456

Griffin DE, 1977, Role of the immune response in recovery from Sindbis virus encephalitis in mice, J Immunol, 118, 1070, 10.4049/jimmunol.118.3.1070

10.1089/088282402317340233

10.1128/JVI.74.7.3366-3378.2000

Greene IP, 2008, Protection from fatal viral encephalomyelitis, AMPA receptor antagonists have a direct effect on the inflammatory response to infection, 105, 3575

10.1038/nri1105

10.1128/jvi.66.11.6429-6435.1992

Griffin DE, 1992, The immune response in viral encephalitis, Semin Immunol, 4, 111

10.1086/315164

Couderc T, 2008, A mouse model for chikungunya, young age and inefficient type-I interferon signaling are risk factors for severe disease, 4, e29

10.1128/JVI.74.19.9294-9299.2000

10.1128/JVI.80.2.737-749.2006

Morrison TE, 2008, The host complement system and arbovirus pathogenesis, Curr Drug Targets, 9, 165, 10.2174/138945008783502485

10.1128/JVI.02799-06

10.4269/ajtmh.1969.18.954

10.1128/JVI.01590-06

10.1016/0042-6822(64)90091-1

Hackbarth SA, 1973, Age‐dependent resistance of mice to sindbis virus infection, reticuloendothelial role, 14, 405

10.1016/j.virol.2007.06.039

Davis NL, 1994, A molecular genetic approach to the study of Venezuelan equine encephalitis virus pathogenesis, Arch Virol, 9, 99

10.1128/JVI.78.1.1-8.2004

10.1128/JVI.79.17.11300-11310.2005

Tesfay MZ, 2008, Alpha/beta interferon inhibits cap‐dependent translation of viral but not cellular mRNA by a PKR‐independent mechanism, J Virol, 82, 2620, 10.1128/JVI.01784-07

Davis NL, 1989, In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone, analysis of a viable deletion mutant, 171, 189

10.1093/infdis/122.1-2.53

10.1006/viro.2001.0878

10.1006/viro.1995.1022

Grieder FB, 1996, Virulent and attenuated mutant Venezuelan equine encephalitis virus show marked differences in replication in infection in murine macrophages, Microb Pathog, 21, 85, 10.1006/mpat.1996.0045

10.1006/viro.2000.0241

10.1128/JVI.74.2.914-922.2000

10.1006/viro.1995.1197

White LJ, 2001, Role of alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis, effect of an attenuating mutation in the 5′ untranslated region, 75, 3706

10.1006/viro.1997.8617

10.1038/nm1140

Jackson AC, 1987, The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection, Lab Invest, 56, 418

10.1007/s004010050626

10.1016/S0165-5728(00)00290-3

10.3109/13550289909029475

10.1097/01.jnen.0000263867.46070.e2

10.1016/S0002-9440(10)62241-9

10.1128/JVI.72.9.7349-7356.1998

Klimstra WB, 1999, The furin protease cleavage recognition sequence of Sindbis virus PE2 can mediate virion attachment to cell surface heparan sulfate, J Virol, 73, 6299, 10.1128/JVI.73.8.6299-6306.1999

Smit JM, 2001, PE2 cleavage mutants of Sindbis virus, correlation between viral infectivity and pH-dependent membrane fusion activation of the spike heterodimer, 75, 11196

Trgovcich J, 1997, Sindbis virus infection of neonatal mice results in a severe stress response, Virology, 227, 234, 10.1006/viro.1996.8289

10.1006/viro.2000.0546

10.1128/JVI.75.14.6303-6309.2001

Smit JM, 2002, Adaptation of alphaviruses to heparan sulfate, interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin, 76, 10128

Ryman KD, 2007, Heparan‐sulfate binding can contribute to the neurovirulence of neuro‐adapted and non‐neuro‐adapted Sindbis viruses, J Virol, 81, 3563, 10.1128/JVI.02494-06

10.1128/JVI.62.7.2329-2336.1988

Griffin DE, 1994, The effects of alphavirus infection on neurons, Ann Neurol, 35, S23, 10.1002/ana.410350709

10.3201/eid1403.070816

10.1038/nri723

10.1128/JVI.77.22.12022-12032.2003

10.1128/JVI.00857-07

Meylan E, 2006, Toll‐like receptors and RNA helicases, two parallel ways to trigger antiviral responses, 22, 561

10.1084/jem.20021598

10.1074/jbc.M300562200

10.1038/ni1087

10.1038/ni1112

10.1002/stem.140501

10.1016/j.humimm.2003.11.002

10.1126/science.288.5465.522

10.1016/S0952-7915(02)00365-5

Steinman RM, 2003, Dendritic cell function in vivo during the steady state, a role in peripheral tolerance, 987, 15

10.1016/S1074-7613(04)00108-6

Wysocka M, 2001, IL‐12 suppression during experimental endotoxin tolerance, dendritic cell loss and macrophage hyporesponsiveness, 166, 7504

10.1016/j.cellimm.2004.03.010

10.1038/nri746

10.1016/j.it.2004.10.007

10.1182/blood-2004-02-0426

10.1038/11303

10.1038/ni0802-699

Dalod M, 2003, Dendritic cell responses to early murine cytomegalovirus infection, subset functional specialization and differential regulation by interferon alpha/beta, 197, 885

10.1084/jem.189.5.821

10.1084/jem.20011666

10.1126/science.284.5421.1835

10.1159/000082101

Bartholome EJ, 1999, Interferon‐beta inhibits Th1 responses at the dendritic cell level. Relevance to multiple sclerosis, Acta Neurol Belg, 99, 44

10.1128/JVI.02579-05

10.1073/pnas.0600287103

Schoepp RJ, 1993, Sindbis virus pathogenesis, phenotypic reversion of an attenuated strain to virulence by second-site intragenic suppressor mutations, 74, 1691

10.1046/j.1523-1747.2000.00904.x

10.4049/jimmunol.175.5.3431

10.1089/vim.2006.0090

Johnston LJ, 1996, Phenotypic changes in Langerhans' cells after infection with arboviruses, a role in the immune response to epidermally acquired viral infection?, 70, 4761

10.1038/77553

10.1016/j.jneuroim.2006.03.012

10.1099/vir.0.83191-0

10.1016/S1074-7613(02)00365-5

10.1038/nature04946

Pollara G, 2005, Dendritic cells in viral pathogenesis, protective or defective?, 86, 187

Kang DC, 2002, mda‐5, an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties, 99, 637

10.1089/107999002753452656

10.1016/S0014-5793(98)00210-5

10.1128/JVI.78.19.10636-10649.2004

Grandvaux N, 2002, Transcriptional profiling of interferon regulatory factor 3 target genes, direct involvement in the regulation of interferon-stimulated genes, 76, 5532

Paz S, 2006, Induction of IRF‐3 and IRF‐7 phosphorylation following activation of the RIG‐I pathway, Cell Mol Biol, 52, 17

10.1128/JVI.79.16.10376-10385.2005

Gitlin L, 2006, Essential role of mda‐5 in type I IFN responses to polyriboinosinic, polyribocytidylic acid and encephalomyocarditis picornavirus, 103, 8459

10.1128/JVI.02411-06

10.1128/JVI.02075-06

10.1128/JVI.76.22.11254-11264.2002

10.1128/JVI.01576-07

10.1128/JVI.02739-05

10.1128/JVI.02073-06

10.1128/JVI.79.3.1487-1499.2005

10.1073/pnas.111163898

10.1146/annurev.micro.55.1.255

10.1074/jbc.273.39.25198

10.1038/nature06042

10.1073/pnas.81.3.908

Patterson JB, 1995, Mechanism of interferon action, double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons, 210, 508

Espert L, 2003, [Interferon: antiviral mechanisms and viral escape], Bull Cancer, 90, 131

10.1128/JVI.77.7.3898-3912.2003

10.1016/j.bbrc.2005.08.132

10.1038/nm1133

Carter CC, 2005, Inhibition of VSV and EMCV replication by the interferon‐induced GTPase, mGBP‐2, differential requirement for wild-type GTP binding domain, 150, 1213

10.1006/viro.1999.9614

10.1016/j.bbrc.2005.12.192

10.1006/viro.1999.9738

10.1128/JVI.01282-07

10.1128/JVI.77.21.11555-11562.2003

10.1128/JVI.78.23.12781-12787.2004

10.1128/JVI.01601-06

10.1099/vir.0.81074-0

10.1128/JVI.02113-07

10.1073/pnas.0607038104

10.1002/rmv.360

Protopopova EV, 1997, [Isolation of a cellular receptor for tick‐borne encephalitis virus using anti‐idiotypic antibodies], Vopr Virusol, 42, 264

Sorokin AV, 2000, Human recombinant laminin‐binding protein, isolation, purification, and crystallization, 65, 546

Thepparit C, 2004, Serotype‐specific entry of dengue virus into liver cells, identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor, 78, 12647

10.1186/1743-422X-2-25

10.1159/000089377

10.4049/jimmunol.177.5.3185

10.1016/j.antiviral.2005.08.006

10.1006/viro.2001.1232

10.1038/nm0897-866