Host dispersal shapes the population structure of a tick‐borne bacterial pathogen

Molecular Ecology - Tập 29 Số 3 - Trang 485-501 - 2020
Sven G. Nilsson1,1, Gabriele Margos2, Noémie S. Becker3, Jaime A. Ramos4, Maria Sofia Núncio1, Volker Fingerle2, Pedro M. Araújo4, Peter Adamík5, Haralambos Alivizatos6, Emilio Barba7, Rafael Barrientos8, Laure Cauchard9, Tibor Csörgő10,11, Αnastasia Diakou12, Niels J. Dingemanse13, Blandine Doligez14, Anna Dubiec15, Tapio Eeva16, Barbara Flaisz17, Tomáš Grim5, Michaela Hau18, Dieter Heylen19,20, Sándor Hornok17, Savas Kazantzidis21, Dávid Kováts22,22, František Krause23, Ivan Literák24, Raivo Mänd25, Lucía Mentesana18, Jennifer Morinay14,26, Marko Mutanen27, Júlio M. Neto28, Markéta Nováková24,29, Juan José Sanz30, Luís P. da Silva31,32, Hein Sprong33, Ina Tirri34, Piotr Tryjanowski35, Tomi Trilar36, Zdeněk Tyller5,37, Marcel E. Visser38, Isabel Lopes de Carvalho1
1Center for Vector and Infectious Diseases Research National Institute of Health Dr. Ricardo Jorge Lisbon Portugal
2German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
3Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
4MARE – Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
5Department of Zoology, Palacky University, Olomouc, Czech Republic
6Hellenic Bird Ringing Center, Athens, Greece
7Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Valencia, Spain
8Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
9School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
10Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
11Ócsa Bird Ringing Station, Ócsa, Hungary
12Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
13Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
14CNRS – Department of Biometry and Evolutionary Biology (LBBE) – University Lyon 1 University of Lyon Villeurbanne France
15Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
16Department of Biology, University of Turku, Turku, Finland
17Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
18Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
19Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
20Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
21Forest Research Institute Hellenic Agricultural Organization “DEMETER” Thesaloniki Greece
22Hungarian Biodiversity Research Society, Budapest, Hungary
23Czech Union for Nature Conservation Břeclav Czech Republic
24Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
25Department of Zoology, University of Tartu, Tartu, Estonia
26Department of Ecology and Evolution/Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
27Department of Ecology and Genetics, University of Oulu, Oulu, Finland
28Department of Biology, Molecular Ecology and Evolution Lab, University of Lund, Lund, Sweden
29Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
30Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
31CIBIO‐InBIO Research Center in Biodiversity and Genetic Resources University of Porto Porto Portugal
32Department of Life Sciences CFE – Centre for Functional Ecology – Science for People & the Planet University of Coimbra Coimbra Portugal
33National Institute of Public Health and Environment (RIVM), Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands
34Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
35Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
36Slovenian Museum of Natural History, Ljubljana, Slovenia
37Museum of the Moravian Wallachia Region Vsetín Czech Republic
38Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands

Tóm tắt

AbstractBirds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused onBorrelia burgdorferisensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick‐borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries.Bburgdorferis.l. prevalence inIxodesspp. was 37% and increased with latitude. The fieldfareTurdus pilarisand the blackbirdT. merulacarried ticks with the highestBorreliaprevalence (92 and 58%, respectively), whereas robinErithacus rubeculaticks were the least infected (3.8%).Borrelia gariniiwas the most prevalent genospecies (61%), followed byB. valaisiana(24%),B. afzelii(9%),B. turdi(5%) andB. lusitaniae(0.5%). A novelBorreliagenospecies “CandidatusBorrelia aligera” was also detected. Multilocus sequence typing (MLST) analysis ofB. gariniiisolates together with the global collection ofB. gariniigenotypes obtained from theBorreliaMLSTpublic database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable amongB. gariniigenotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick‐borne pathogens are shaped by their host associations and the movement patterns of these hosts.

Từ khóa


Tài liệu tham khảo

10.1603/0022-2585(2007)44[303:BLIIIR]2.0.CO;2

10.1098/rsbl.2011.1223

10.18637/jss.v067.i01

Bellet‐Edimo R., 2005, Frequency and efficiency of transovarial and subsequent transtadial transmission of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks, Bulletin de la Societé Neuchâteloise des Sciences Naturelles, 128, 117

10.1371/journal.pcbi.1006650

10.1146/annurev-genet-011112-112140

10.1534/genetics.104.028738

10.1128/JB.01521-10

10.1016/j.ttbdis.2017.09.004

10.3402/iee.v1i0.9545

10.1128/AEM.07945-11

10.1007/s00436-016-4943-3

10.1534/genetics.110.120121

10.1093/jmedent/43.4.737

10.1128/AEM.02278-10

10.1128/AEM.01674-08

EDC, 2018, European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]

10.1079/9780851996325.0091

Estrada‐Peña A., 2004, Ticks of domestic animals in the Mediterranean Region – A guide to identification of species

10.1016/j.ttbdis.2017.03.001

10.1016/j.ttbdis.2014.05.003

10.1186/1471-2105-10-152

10.1128/AEM.62.7.2338-2344.1996

10.1111/j.1462-2920.2011.02515.x

10.1155/2009/593232

10.1038/35001663

10.1128/AEM.69.5.2825-2830.2003

10.1007/BF02101694

10.1016/j.ttbdis.2010.10.004

Heylen D., 2016, Ecology and control of vector‐borne diseases, 91

10.1186/s13071-017-2423-y

10.1111/1462-2920.13685

10.1111/1462-2920.12304

10.1038/srep39596

10.1111/1462-2920.12332

10.1111/1462-2920.12059

Hillyard P. D., 1996, Ticks of North‐West Europe

10.1073/pnas.0903810106

10.1159/000213069

10.1016/S1286-4579(00)00393-2

Humair P. F., 1998, An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes, International Journal of Medical Microbiology Virology Parasitology Infectious Diseases, 287, 521

10.1371/journal.pone.0094384

10.4269/ajtmh.1992.47.730

10.1186/1471-2105-11-595

10.1093/molbev/mst010

10.1016/j.ijmm.2006.01.001

10.1093/jmedent/35.1.77

10.1016/S0966-842X(01)02298-3

10.1002/9780470600122.ch12

10.1038/nrmicro1475

10.1128/AEM.64.4.1169-1174.1998

10.18637/jss.v082.i13

Laaksonen M., 2017, Crowdsourcing‐based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland, Emerging Microbes and Infection, 6, e31

10.1073/pnas.0233733100

10.1128/AEM.07961-11

10.1007/s10344-012-0617-3

10.1007/s004360050433

10.1603/0022-2585(2005)042[0168:BBSLII]2.0.CO;2

10.1099/ijsem.0.000491

10.1073/pnas.0800323105

10.1128/AEM.00231-12

10.1016/j.meegid.2011.07.022

10.1098/rspb.2005.3230

10.1016/j.ijmm.2008.03.004

10.1079/9780851996325.0201

10.1128/AEM.01087-17

10.1111/j.1365-294X.2006.02908.x

10.1111/1758-2229.12218

10.1016/j.ttbdis.2015.06.010

10.1007/s10493-012-9583-4

10.1111/1758-2229.12058

10.1111/j.1462-2920.2012.02834.x

10.1128/AEM.01982-07

10.1128/AEM.61.8.3082-3087.1995

10.1093/jme/tjw158

10.1093/bioinformatics/btp696

10.1093/bioinformatics/btg412

Pérez‐Eid C., 2007, Les tiques: Identification, biologie, importance médicale et veterinaire

10.1128/AEM.72.1.976-979.2006

R Core Team, 2013, R: A language and environment for statistical computing

10.1111/jeb.13075

10.1590/S0102-09352010000400015

Rambaut A., 2014, Tracer v1.6

10.1016/S0169-4758(96)10072-7

10.1128/AEM.71.11.7203-7216.2005

10.3121/cmr.1.1.5

10.1128/JCM.33.12.3091-3095.1995

10.1007/s10493-011-9440-x

10.1201/9781420036305

10.3201/eid0802.010198

Sonenshine D. E., 1994, Ecological dynamics of tick‐borne zoonoses, 10.1093/oso/9780195073133.001.0001

10.1128/AEM.00609-17

10.3920/978-90-8686-838-4_8

10.1093/genetics/123.3.585

10.1093/jmedent/31.6.880

10.1128/AEM.01060-07

10.1002/9780470344668

10.1089/vbz.2013.1458

10.3109/00365548.2013.799288

10.1186/s13071-016-1389-5

10.1534/genetics.116.193425

10.1111/j.1462-2920.2010.02319.x

10.1016/j.meegid.2012.11.014

10.1016/j.meegid.2013.12.011

10.1371/journal.pone.0081433

10.1093/jmedent/36.2.216