Horizon instability of massless scalar perturbations of an extreme Reissner-Nordström-AdS black hole
Tóm tắt
We study the stability of extreme Reissner-Nordström-AdS black hole under massless scalar perturbations. We show that the perturbation on the horizon of the extreme Reissner-Nordström-AdS black hole experiences a power-law decay, instead of an exponential decay as observed in the nonextreme AdS black hole. On the horizon of the extreme Reissner-Nordström-AdS black hole, the blow up happens at lower order derivative of the scalar field compared with that of the extreme Reissner-Nordström black hole, which shows that extreme AdS black holes tend to instability in comparison to black holes in asymptotic flat space-times.
Tài liệu tham khảo
T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063 [INSPIRE].
R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].
S. Aretakis, Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds, J. Funct. Anal. 263 (2012) 2770 [arXiv:1110.2006] [INSPIRE].
S. Aretakis, Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations I, Commun. Math. Phys. 307 (2011) 17 [arXiv:1110.2007] [INSPIRE].
S. Aretakis, Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations II, Annales Henri Poincaré 12 (2011) 1491 [arXiv:1110.2009] [INSPIRE].
S. Aretakis, Horizon instability of extremal black holes, arXiv:1206.6598 [INSPIRE].
P. Blue and A. Soffer, Phase space analysis on some black hole manifolds, J. Funct. Anal. 25637 (2009) 1 [math/0511281] [INSPIRE].
M. Dafermos and I. Rodnianski, The black hole stability problem for linear scalar perturbations, in Proceedings of the 12th Marcel Grossmann meeting, T. Damour, R.T. Jantzen and R. Ruffini eds., World Scientific, Singapore (2012) [arXiv:1010.5137] [INSPIRE].
A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
J. Lucietti and H.S. Reall, Gravitational instability of an extreme Kerr black hole, Phys. Rev. D 86 (2012) 104030 [arXiv:1208.1437] [INSPIRE].
K. Murata, Instability of higher dimensional extreme black holes, Class. Quant. Grav. 30 (2013) 075002 [arXiv:1211.6903] [INSPIRE].
J. Lucietti, K. Murata, H.S. Reall and N. Tanahashi, On the horizon instability of an extreme Reissner-Nordström black hole, JHEP 03 (2013) 035 [arXiv:1212.2557] [INSPIRE].
P. Bizon and H. Friedrich, A remark about wave equations on the extreme Reissner-Nordström black hole exterior, Class. Quant. Grav. 30 (2013) 065001 [arXiv:1212.0729] [INSPIRE].
S. Aretakis, A note on instabilities of extremal black holes under scalar perturbations from afar, Class. Quant. Grav. 30 (2013) 095010 [arXiv:1212.1103] [INSPIRE].
G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
G.T. Horowitz, Comments on black holes in string theory, Class. Quant. Grav. 17 (2000) 1107 [hep-th/9910082] [INSPIRE].
B. Wang, C.-Y. Lin and E. Abdalla, Quasinormal modes of Reissner-Nordström anti-de Sitter black holes, Phys. Lett. B 481 (2000) 79 [hep-th/0003295] [INSPIRE].
J. Bicak, Gravitational collapse with charge and small asymmetries I. Scalar perturbations, Gen. Rel. Grav. 3 (1972) 331.
C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].
C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution, Phys. Rev. D 49 (1994) 890 [gr-qc/9307010] [INSPIRE].
L.M. Burko and A. Ori, Late time evolution of nonlinear gravitational collapse, Phys. Rev. D 56 (1997) 7820 [gr-qc/9703067] [INSPIRE].
B. Wang, C. Molina and E. Abdalla, Evolving of a massless scalar field in Reissner-Nordström anti-de Sitter space-times, Phys. Rev. D 63 (2001) 084001 [hep-th/0005143] [INSPIRE].
J.-M. Zhu, B. Wang and E. Abdalla, Object picture of quasinormal ringing on the background of small Schwarzschild anti-de Sitter black holes, Phys. Rev. D 63 (2001) 124004 [hep-th/0101133] [INSPIRE].
B. Wang, C.-Y. Lin and C. Molina, Quasinormal behavior of massless scalar field perturbation in Reissner-Nordström anti-de Sitter spacetimes, Phys. Rev. D 70 (2004) 064025 [hep-th/0407024] [INSPIRE].
R. Gómez, J. Winicour and R. Issacson, Evolution of scalar fields from characteristic data, J. Comp. Phys. 98 (1992) 11.
P.R. Brady, C.M. Chambers, W.G. Laarakkers and E. Poisson, Radiative falloff in Schwarzschild-de Sitter space-time, Phys. Rev. D 60 (1999) 064003 [gr-qc/9902010] [INSPIRE].
P.R. Brady, C.M. Chambers, W. Krivan and P. Laguna, Telling tails in the presence of a cosmological constant, Phys. Rev. D 55 (1997) 7538 [gr-qc/9611056] [INSPIRE].
K. Murata, H.S. Reall and N. Tanahashi, What happens at the horizon(s) of an extreme black hole?, arXiv:1307.6800 [INSPIRE].