Homogenization of dissipative, noisy, Hamiltonian dynamics

Stochastic Processes and their Applications - Tập 128 - Trang 2367-2403 - 2018
Jeremiah Birrell1, Jan Wehr1,2
1Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
2Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA

Tài liệu tham khảo

J. Angst, I. Bailleul, C. Tardif, Kinetic brownian motion on riemannian manifolds, 2015. arXiv preprint arXiv:1501.03679. Bailleul, 2010, A stochastic approach to relativistic diffusions, Ann. Inst. Henri Poincaré (B), 46, 760 J. Birrell, S. Hottovy, G. Volpe, J. Wehr, Small Mass Limit of a Langevin Equation on a Manifold, ArXiv e-prints, Apr. 2016. J. Birrell, J. Wehr, A homogenization theorem for langevin systems with an application to hamiltonian dynamics, 2017. arXiv preprint arXiv:1707.02884. Bismut, 2005, The hypoelliptic laplacian on the cotangent bundle, J. Amer. Math. Soc., 18, 379, 10.1090/S0894-0347-05-00479-0 Bismut, 2015, Hypoelliptic laplacian and probability, J. Math. Soc. Japan, 67, 1317, 10.2969/jmsj/06741317 Chetrite, 2008, Fluctuation relations for diffusion processes, Comm. Math. Phys., 282, 469, 10.1007/s00220-008-0502-9 Chevalier, 2008, Relativistic diffusions: A unifying approach, J. Math. Phys., 49, 10.1063/1.2885071 Dowell, 1980 K. Gawȩdzki, Fluctuation relations in stochastic thermodynamics, 2013. arXiv preprint arXiv:1308.1518. Hänggi, 1982, Nonlinear fluctuations: The problem of deterministic limit and reconstruction of stochastic dynamics, Phys. Rev. A, 25, 1130, 10.1103/PhysRevA.25.1130 Herzog, 2016, The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction, J. Stat. Phys., 163, 659, 10.1007/s10955-016-1498-8 Hottovy, 2014, The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction, Comm. Math. Phys., 336, 1259, 10.1007/s00220-014-2233-4 Jørgensen, 1978, Construction of the brownian motion and the ornstein-uhlenbeck process in a riemannian manifold on basis of the gangolli-mc.kean injection scheme, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 44, 71, 10.1007/BF00534142 Karatzas, 2014 Khasminskii, 2011 Khoa, 1992, In-medium effects in the description of heavy-ion collisions with realistic nn interactions, Nuclear Phys. A, 548, 102, 10.1016/0375-9474(92)90079-Y Kramers, 1940, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284, 10.1016/S0031-8914(40)90098-2 Li, 2016, Random perturbation to the geodesic equation, Ann. Probab., 44, 544, 10.1214/14-AOP981 Nelson, 1967 Ortega, 2013 Pavliotis, 2003, White noise limits for inertial particles in a random field, Multiscale Model. Simul., 1, 527, 10.1137/S1540345903421076 Pavliotis, 2008 Pinsky, 1976, Isotropic transport process on a riemannian manifold, Trans. Amer. Math. Soc., 218, 353, 10.1090/S0002-9947-1976-0402957-2 Pinsky, 1981, Homogenization in stochastic differential geometry, Publ. Res. Inst. Math. Sci., 17, 235, 10.2977/prims/1195186714 Sancho, 1982, Adiabatic elimination for systems of brownian particles with nonconstant damping coefficients, J. Stat. Phys., 28, 291, 10.1007/BF01012607 Smoluchowski, 1916, Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen, Z. Phys., 17, 557 Volpe, 2010, Influence of noise on force measurements, Phys. Rev. Lett., 104, 170602, 10.1103/PhysRevLett.104.170602 Wilcox, 1967, Exponential operators and parameter differentiation in quantum physics, J. Math. Phys., 8, 10.1063/1.1705306