Holographic superconductivity in the large D expansion

Journal of High Energy Physics - Tập 2014 - Trang 1-22 - 2014
Roberto Emparan1,2, Kentaro Tanabe2
1Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
2Departament de Física Fonamental, Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain

Tóm tắt

We study holographic superconductivity by expanding the equations in the inverse of the number of spacetime dimensions D. We obtain an analytic expression for the critical temperature as a function of the conformal dimension of the condensate operator. Its accuracy for 3+1-dimensional superconductors is better than 15%. The analysis reveals a simple, and quantitative, explanation for the onset of the superconducting instability, as well as universal features of holographic superconductivity in the large D limit. In particular, this allows to easily compute the effects of backreaction on the critical temperature.

Tài liệu tham khảo

A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68 (1996)13 [INSPIRE]. R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013)009 [arXiv:1302.6382] [INSPIRE]. R. Emparan, D. Grumiller and K. Tanabe, Large D gravity and low D strings, Phys. Rev. Lett. 110 (2013) 251102 [arXiv:1303.1995] [INSPIRE]. V. Asnin et al., High and Low Dimensions in The Black Hole Negative Mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE]. J. Soda, Hierarchical dimensional reduction and gluing geometries, Prog. Theor. Phys. 89 (1993)1303 [INSPIRE]. D. Grumiller, W. Kummer and D. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE]. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE]. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009)126008 [arXiv:0901.1160] [INSPIRE]. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE]. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE]. G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE]. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE]. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE]. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE]. C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE]. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE]. R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, arXiv:1401.1957 [INSPIRE]. S. Hod, Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation, Class. Quant. Grav. 28 (2011) 105016 [arXiv:1107.0797] [INSPIRE]. G. Giribet, The large D limit of dimensionally continued gravity, Phys. Rev. D 87 (2013) 107504 [arXiv:1303.1982] [INSPIRE]. P.D. Prester, Small black holes in the large D limit, JHEP 06 (2013) 070 [arXiv:1304.7288] [INSPIRE].