Holographic acoustic elements for manipulation of levitated objects

Nature Communications - Tập 6 Số 1
Asier Marzo1, Sue Ann Seah2, Bruce W. Drinkwater3, Deepak Ranjan Sahoo4, Benjamin Long2, Sriram Subramanian4
1Deparment of Mathematics and Computer Engineering, Public University of Navarre, Campus Arrosadia, Pamplona, 31006, Spain
2Ultrahaptics Ltd, Engine Shed, Station Approach, Bristol, BS1 6QH, UK
3Department of Mechanical Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
4Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9RH, UK

Tóm tắt

AbstractSound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

Từ khóa


Tài liệu tham khảo

Bruus, H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12, 1014–1021 (2012).

Brandt, E. H. Acoustic physics: suspended by sound. Nature 413, 474–475 (2001).

Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A. & Poulikakos, D. Acoustophoretic contactless transport and handling of matter in air. Proc. Natl Acad. Sci. USA 110, 12549–12554 (2013).

Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Appl. Phys. Lett. 102, 123508 (2013).

Kang, S. T. & Yeh, C. K. Potential-well model in acoustic tweezers. IEEE Trans. Ultrason. Ferroelect. Freq. Control 57, 1451–1459 (2010).

Hong, Z. Y., Xie, W. J. & Wei, B. Acoustic levitation with self-adaptive flexible reflectors. Rev. Sci. Instrum. 82, 074904 (2011).

Laurell, T., Petersson, F. & Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007).

Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012).

Weber, R. J. et al. Acoustic levitation: recent developments and emerging opportunities in biomaterials research. Eur. Biophys. J. 41, 397–403 (2012).

Whymark, R. R. Acoustic field positioning for containerless processing. Ultrasonics 13, 251–261 (1975).

Xie, W. J., Cao, C. D., Lü, Y. J., Hong, Z. Y. & Wei, B. Acoustic method for levitation of small living animals. Appl. Phys. Lett. 89, 214102 (2006).

Seah, S., Drinkwater, B. W., Carter, T., Malkin, R. & Subramanian, S. Dexterous ultrasonic levitation of millimeter-sized objects in air. IEEE Trans. Ultrason. Ferroelect. Freq. Control 61, 1233–1236 (2014).

Glynne-Jones, P. et al. Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans. Ultrason. Ferroelect. Freq. Control 59, 1258–1266 (2012).

Ochiai, Y., Hoshi, T. & Rekimoto, J. Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33, 85 (2014).

Lee, J. et al. Single beam acoustic trapping. Appl. Phys. Lett. 95, 073701 (2009).

Lam, K. H. et al. Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application. Biotechnol. Bioeng. 110, 881–886 (2013).

Zhang, P. et al. Generation of acoustic self-bending and bottle beams by phase engineering. Nat. Commun. 5, 4316 (2014).

Démoré, C. E. et al. Acoustic tractor beam. Phys. Rev. Lett. 112, 174302 (2014).

Baresch, D., Thomas, J. L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Preprint at http://arxiv.org/abs/1411.1912 (2014).

Foresti, D. & Poulikakos, D. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. Phys. Rev. Lett. 112, 024301 (2014).

Omirou, T., Marzo, A., Seah, S. A. & Subramanian, S. in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 309–312 (New York, NY, USA, 2015).

Baresch, D., Thomas, J. L. & Marchiano, R. Spherical vortex beams of high radial degree for enhanced single-beam tweezers. J. Appl. Phys. 113, 184901 (2013).

Silva, G. T. & Baggio, A. L. Designing single-beam multitrapping acoustical tweezers. Ultrasonics 56, 449–455 (2015).

Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2013).

Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989).

Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 106, 3313–3316 (1999).

Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).

Arlt, J. & Padgett, M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000).

Nash, S. G. & Nocedal, J. A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale optimization. SIAM J. Optim. 1, 358–372 (1991).

Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917 (2004).

Verma, A., Schug, A., Lee, K. H. & Wenzel, W. Basin hopping simulations for all-atom protein folding. J. Chem. Phys. 124, 044515 (2006).

Prentiss, M. C., Wales, D. J. & Wolynes, P. G. Protein structure prediction using basin-hopping. J. Chem. Phys. 128, 225106 (2008).

Leary, R. H. & Doye, J. P. Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. Phys. Rev. E 60, 6320–6322 (1999).