Holocene marine cement coatings on beach-rocks of the Abu Dhabi coastline (UAE); Analogs for cement fabrics in ancient limestones

Springer Science and Business Media LLC - Tập 9 - Trang 119-131 - 1994
Christopher G.SSt C. Kendall1, James L. Sadd2, Abdulrahman Alsharhan3
1Department of Geological Sciences, University of South Carolina, Columbia
2Department of Geology, Occidental College, Los Angeles
3Desert and Marine Environment Research Center, United Arab Emirates University, Al Ain, United Arab Emirates

Tóm tắt

Marine carbonate cements, which are superficially like travertines from meteoric caves, are coating and binding some intertidal sedimentary rock surfaces occurring in coastal Abu Dhabi, the United Arab Emirates, (UAE). Near Jebel Dhana these surficial cements can be up to 3 cm thick and envelope beach rock surfaces and fossils. They are also present both as thin coats and a fracture-fill cement in the intertidal hard grounds associated with the Khor Al Bazam algal flats. The thickness, microscopic characteristics, and morphology of the marine cement coatings from Jebel Dhana indicates incremental deposition of aragonite in conjunction with traces of sulfate minerals. Most of these cement coatings are micritic, but the layers which encrust the hard grounds from the algal flat of the Khor al Bazam have a more radial and fibrous micro-structure and are composed solely of aragonite. The stable isotopic composition of coatings from Jebel Dhana (δ18O = +0.35, δ13C = +4.00) falls within the compositional range for modern marine non skeletal aragonite and suggests that the marine travertine-like cements precipitate from the agitated, slightly hypersaline Arabian Gulf’ sea water during repeated cycles of exposure, evaporation and immersion. Similar cement coatings and microfabrics are present in the tepee structured and brecciated sediments of the Guadalupe Mountains (Permian) and the Italian Alps (Triassic), in Holocene algal head cements from the Great Salt Lake, and in similar Tertiary algal heads in the Green River Formation of the western US. The petrographic similarity of these ancient “flow stone” like cements with Recent hypersaline marine cement coatings suggests that high rates of carbonate cementation and hypersaline conditions contribute to tepee formation and cavity fill.

Tài liệu tham khảo

AMERICAN SOCIETY FOR TESTING AND MATERIALS, 1967, Fink Index to the Powder. Diffraction File: American Society for Testing and Materials Publication PD 1S-17F, compiled by the American Society for Testing and Materials (Joint Committee on Powder Diffraction Standards — JCPDS).

ASSERETTO, R. L. A. M., and KENDALL, C. G. ST. C., 1977, Nature, origin and classification of peritidal tepee structures and related breccias:Sedimentology, v. 24, p. 153–210.

BATHURST, R. G. C., 1975, Carbonate Rocks and their Diagenesis. Elsevier Scientific Publication, Amsterdam, 658 p.

BUTLER, G. P., HARRIS, P. M., and KENDALL, C. G. ST. C., 1982, Recent evaporites from Abu Dhabi, Coastal Flats,in Hanford, C. R., Loucks, R. E., and Davies, G. R., (eds.), Depositional and diagenetic spectra of evaporites, a Core Workshop, Society of Economic Paleontologists and Mineralogists Core Workshop, No. 3, Calgary, Canada, p. 33–64.

CLARK, B. B., 1968, Geomorphological features of Nother Ivey’s Bay near Padstow, with an account of the under-cliff bank and intertidal reef of cemented linesand at Little Cove:Transactions of the Royal Geological Society of Cornwall, v. 20, p. 69–79.

DUNHAM, R. J., 1969, Vadose pisolite in the Capitan Reef (Permian) New Mexico and Texas,in G. M. Friedman (eds.), Depositional environments in carbonate rock. Symposium Society of Economic Paleontologists and Mineralogist Special Publication, 14, p. 182–191.

EARDLEY, A. J., 1938, Sediments of Great Salt Lake Utah:Bulletin of the American Association of Petroleum Geologists, v. 22, p. 1305–1411.

EMERY, K. O., TRACEY, J. I. and LADD, H. S., 1956, Geology of Bikini and nearby atolls, U.S. Geological Survey Professional Paper, 260A: 1–259.

ESTEBAN, M., and PRAY, L. C., 1977, Origin of the pisolite facies of the shelf area, in Hileman, M. E., and Mazzullo, S. J. (eds.), Upper Guadalupian Facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and west Texas: Permian Basin Section. Society Of Economic Paleontologists and Minerologist, Publication 77-16, p. 479–486.

GINSBURG, R. N., 1953, Beach rock in south Florida:Journal of Sedimentary Petrology, v. 23, p. 85–92.

GUO, B., and FRIEDMAN, G. M., 1990, Petrophysical characteristics of Holocene beachrock:Carbonates and Evaporites, v. 5, 1990, p. 223–243.

INDEN, R. F., and MOORE, C. H., 1983, Beach,in P.A. Scholle, D.G. Bebout and C.H. moore (eds.), Carbonate Depositional Environments. Memoir American Association of Petroleum Geologists Bulletin, 33, p. 345–440.

LOREAU, J. P., and PURSER, B. H., 1973, Distribution and ultrastructure of Holocene ooids in the Persian Gulf, p. 279–328,in Purser, B.H. (eds.), The Persian Gulf, Holocene Carbonate Sedimentation in a Shallow Epi-Continental Sea. Springer-Verlag, New York, 471 p.

MITTERER, R. M., and R. CUNNINGHAM, 1985, Interaction of natural organic matter with grain surfaces — implications for CaCO3 precipitation. Society Economic Paleontologist and Mineralogist Special Publication, v. 36, p. 17–32.

NESTEROFF, W.D., 1955, De l’origine des depots calcaires:Compte Rendu, v. 240, p. 220–222.

PEACOCK, M.A., and M.C. BANDY, 1938, Ungemachite and clino-ungemachite: new minerals from Chile:American Mineralogist, v. 23, 3p. 14–328.

PURSER, B. H., 1973, The Persian Gulf, Holocene Carbonate Sedimentation in a Shallow Epeiric Continental Sea. Springer-Verlag, New York, 420 p.

PURSER, and LOREAU, J. P., 1973, Aragonitic supratidal encrustations on the Trucial Coast, Persian Gulf,in Purser, B. H. (eds.), The Persian Gulf, Holocene Carbonate Sedimentation in a Shallow Epeiric Continental Sea. Springer-Verlag, New York, p. 343–376.

READ, J. F., 1974, Carbonate bank and wave-built platform sedimentation, Edel Province, Shark Bay, Western Australia,in B.W. Logan (eds.), Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western Australia. Memoir American Association of Petroleum Geologists, 22, p. 1–60.

TAYLOR, J. M. C., and ILLING, L. V., 1969, Holocene intertidal calcium carbonate cementation, Qatar, Persian Gulf:Sedimentology, v. 12, p. 69–107.

VAN STRAATEN, L. M. J. U., 1957, Recent sandstones on the coasts of the Netherlands and of the Rhone delta:Geologie Mijnbouw, v. 19, p. 196–213.

WARD, R.F., KENDALL, C. G. ST. C., and HARRIS, P. M., 1986, Late Permian (Guadalupian) Facies and their association with hydrocarbons- the Permian Basin, West Texas and New Mexico:Bulletin of the American Association of Petroleum Geologists, v. 70, p. 239–262.

WARREN, J. K., and KENDALL, C. G. ST. C., 1985, Comparison of marine (subaerial) and salina (subaqueous) evaporites: modern and ancient:Bulletin of the American Association of Petroleum Geologists, v. 69, p. 1013–1023.