Hilbert schemes of nonreduced divisors in Calabi–Yau threefolds and W-algebras

European Journal of Mathematics - Tập 7 Số 3 - Trang 807-868 - 2021
Chuang, Wu-Yen1, Creutzig, Thomas2, Diaconescu, Duiliu-Emanuel3, Soibelman, Yan4
1Department of Mathematics, National Taiwan University, Taipei, Taiwan
2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
3NHETC, Rutgers University, Piscataway, USA
4Department of Mathematics, Kansas State University, Manhattan, USA

Tóm tắt

A W-algebra action is constructed via Hecke transformations on the equivariant Borel–Moore homology of the Hilbert scheme of points on a nonreduced plane in three-dimensional affine space. The resulting W-module is then identified to the vacuum module. The construction is based on a generalization of the ADHM construction as well as the W-action on the equivariant Borel–Moore homology of the moduli space of instantons constructed by Schiffmann and Vasserot.

Tài liệu tham khảo

citation_journal_title=Lett. Math. Phys.; citation_title=Liouville correlation functions from four-dimensional gauge theories; citation_author=LF Alday, D Gaiotto, Y Tachikawa; citation_volume=91; citation_issue=2; citation_publication_date=2010; citation_pages=167-197; citation_doi=10.1007/s11005-010-0369-5; citation_id=CR1

citation_journal_title=Invent. Math.; citation_title=Representation theory of

-algebras; citation_author=T Arakawa; citation_volume=169; citation_issue=2; citation_publication_date=2007; citation_pages=219-320; citation_doi=10.1007/s00222-007-0046-1; citation_id=CR2

Arakawa, T., Creutzig, T., Linshaw, A.R.:

$$W$$

-algebras as coset vertex algebras. Invent. Math. 218(1), 145–195 (2019).

arXiv:1801.03822

citation_title=A presentation of the deformed algebra; citation_inbook_title=Symmetries, Integrable Systems and Representations; citation_publication_date=2013; citation_pages=1-13; citation_id=CR4; citation_author=N Arbesfeld; citation_author=O Schiffmann; citation_publisher=Springer

Braverman, A., Finkelberg, M., Nakajima, H.: Instanton Moduli Spaces and

$$W$$

-Algebras. Astérisque, vol. 385. Société Mathématique de France, Paris (2016)

citation_journal_title=Doc. Math.; citation_title=Moduli of framed sheaves on projective surfaces; citation_author=U Bruzzo, D Markushevich; citation_volume=16; citation_publication_date=2011; citation_pages=399-410; citation_id=CR6

citation_journal_title=Mosc. Math. J.; citation_title=Five dimensional gauge theories and vertex operators; citation_author=E Carlsson, N Nekrasov, A Okounkov; citation_volume=14; citation_issue=1; citation_publication_date=2014; citation_pages=39-61; citation_doi=10.17323/1609-4514-2014-14-1-39-61; citation_id=CR7

citation_journal_title=Duke Math. J.; citation_title=Exts and vertex operators; citation_author=E Carlsson, A Okounkov; citation_volume=161; citation_issue=9; citation_publication_date=2012; citation_pages=1797-1815; citation_doi=10.1215/00127094-1593380; citation_id=CR8

citation_title=Representation Theory and Complex Geometry. Modern Birkhäuser Classics; citation_publication_date=2010; citation_id=CR9; citation_author=N Chriss; citation_author=V Ginzburg; citation_publisher=Birkhäuser

citation_journal_title=Q. J. Math.; citation_title=The critical CoHA of a quiver with potential; citation_author=B Davison; citation_volume=68; citation_issue=2; citation_publication_date=2017; citation_pages=635-703; citation_doi=10.1093/qmath/haw053; citation_id=CR10

Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. Invent. Math. 221(3), 777–871 (2020).

arXiv:1601.02479

citation_journal_title=J. Geom. Phys.; citation_title=Moduli of ADHM sheaves and local Donaldson–Thomas theory; citation_author=D-E Diaconescu; citation_volume=62; citation_issue=4; citation_publication_date=2012; citation_pages=763-799; citation_doi=10.1016/j.geomphys.2011.12.018; citation_id=CR12

Gaiotto, D., Rapčák, M.: Vertex algebras at the corner. J. High Energy Phys. 2019(1), # 160 (2019).

arXiv:1703.00982

Gholampour, A., Sheshmani, A., Yau, S.-T.: Localized Donaldson–Thomas theory of surfaces. Amer. J. Math. 142(2), 405–442 (2020).

arXiv:1701.08902

Kapranov, M., Vasserot, E.: The cohomological Hall algebra of a surface and factorization cohomology (2019).

arXiv:1901.07641

citation_journal_title=Commun. Number Theory Phys.; citation_title=Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants; citation_author=M Kontsevich, Y Soibelman; citation_volume=5; citation_issue=2; citation_publication_date=2011; citation_pages=231-352; citation_doi=10.4310/CNTP.2011.v5.n2.a1; citation_id=CR16

citation_journal_title=J. Algebraic Geom.; citation_title=Virtual pull-backs; citation_author=C Manolache; citation_volume=21; citation_issue=2; citation_publication_date=2012; citation_pages=201-245; citation_doi=10.1090/S1056-3911-2011-00606-1; citation_id=CR17

Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. Astérisque, vol. 408. Société Mathématique de France, Paris (2019).

arXiv:1211.1287

Minets, A.: Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces. Selecta Math. (N.S.) 26(2), # 30 (2020).

arXiv:1801.01429

citation_title=Lectures on instanton counting; citation_inbook_title=Algebraic Structures and Moduli Spaces; citation_publication_date=2004; citation_pages=31-101; citation_id=CR21; citation_author=H Nakajima; citation_author=K Yoshioka; citation_publisher=American Mathematical Society

citation_journal_title=Lett. Math. Phys.; citation_title=Exts and the AGT relations; citation_author=A Neguţ; citation_volume=106; citation_issue=9; citation_publication_date=2016; citation_pages=1265-1316; citation_doi=10.1007/s11005-016-0865-3; citation_id=CR23

Neguţ, A.: AGT relations for sheaves on surfaces (2017).

arXiv:1711.00390

citation_journal_title=Comm. Math. Phys.; citation_title=The

-AGT-W relations via shuffle algebras; citation_author=A Neguţ; citation_volume=358; citation_issue=1; citation_publication_date=2018; citation_pages=101-170; citation_doi=10.1007/s00220-018-3102-3; citation_id=CR25

Nekrasov, N.: BPS/CFT correspondence II: Instantons at crossroads, moduli and compactness theorem. Adv. Theor. Math. Phys. 21(2), 503–583 (2017).

arXiv:1608.07272

Nekrasov, N., Prabhakar, N.S.: Spiked instantons from intersecting D-branes. Nucl. Phys. B 914, 257–300 (2017).

arXiv:1611.03478

citation_journal_title=Internat. J. Math.; citation_title=Schematic Harder-Narasimhan stratification; citation_author=N Nitsure; citation_volume=22; citation_issue=10; citation_publication_date=2011; citation_pages=1365-1373; citation_doi=10.1142/S0129167X11007264; citation_id=CR28

Porta, M., Sala, F.: Two-dimensional categorified Hall algebras (2019).

arXiv:1903.07253

Rapčák, M., Soibelman, Y., Yang, Y., Zhao, G.: Cohomological Hall algebras, vertex algebras and instantons. Comm. Math. Phys. 376(3), 1803–1873 (2020).

arXiv:1810.10402

Ren, J., Soibelman, Y.: Cohomological Hall algebras, semicanonical bases and Donaldson–Thomas invariants for $2$-dimensional Calabi–Yau categories (with an appendix by Ben Davison). In: Auroux, D. et al. (eds.) Algebra, Geometry, and Physics in the 21st Century. Progress in Mathematics, vol. 324. Birkhäuser, Cham (2017).

arXiv:1508.06068

Sala, F., Schiffmann, O.: Cohomological Hall algebra of Higgs sheaves on a curve. Algebr. Geom. 7(3), 346–376 (2020).

arXiv:1801.03482

citation_journal_title=Publ. Math. Inst. Hautes Études Sci.; citation_title=Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on

; citation_author=O Schiffmann, E Vasserot; citation_volume=118; citation_publication_date=2013; citation_pages=213-342; citation_doi=10.1007/s10240-013-0052-3; citation_id=CR33

Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: generators. J. Reine Angew. Math. 760, 59–132 (2020).

arXiv:1705.07488

Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: Yangians (2017).

arXiv:1705.07491

Soibelman, Y.: Remarks on cohomological Hall algebras and their representations. In: Ballmann, W. et al. (eds.) Arbeitstagung Bonn 2013. Progress in Mathematics, vol. 319, pp. 355–385. Birkhäuser, Cham (2016).

arXiv:1404.1606

Tanaka, Y., Thomas, R.P.: Vafa–Witten invariants for projective surfaces I: stable case. J. Algebraic Geom. 29(4), 603–668 (2020).

arXiv:1702.08487

citation_journal_title=Proc. London Math. Soc.; citation_title=The cohomological Hall algebra of a preprojective algebra; citation_author=Y Yang, G Zhao; citation_volume=116; citation_issue=5; citation_publication_date=2018; citation_pages=1029-1074; citation_doi=10.1112/plms.12111; citation_id=CR38

Zhao, Y.: On the

$$K$$

-theoretic Hall algebra of a surface. IMRN, rnaa123 (2020).

arXiv:1901.00831