Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites

Materials Horizons - Tập 7 Số 2 - Trang 530-540
Ying Li1,2,3,4,5, Zhifeng Shi1,2,3,4,5, Wenqing Liang1,2,3,4,5, Lintao Wang1,2,3,4,5, Sen Li1,2,3,4,5, Shouxin Zhang1,2,3,4,5, Zhuangzhuang Ma1,2,3,4,5, Yue Wang1,2,3,4,5, Yongzhi Tian1,2,3,4,5, Di Wu1,2,3,4,5, Xinjian Li1,2,3,4,5, Yuantao Zhang6,1,7,8,9, Chongxin Shan1,3,10,4,5, Xiaosheng Fang1,11,12,13
1China
2Department of Physics and Engineering
3Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
4Zhengzhou 450052
5Zhengzhou University
6Changchun 130012
7College of Electronic Science and Engineering
8Jilin University
9State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun, 130012, China
10State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
11Department of Materials Science, Fudan University, Shanghai 200433, China
12Fudan University
13Shanghai 200433

Tóm tắt

We demonstrated a stable and spectrum-selective self-powered UV photodetector based on lead-free Cs3Cu2I5 films with excellent photodetection performance.

Từ khóa


Tài liệu tham khảo

Aufiero, 2006, J. Photochem. Photobiol., B, 82, 132, 10.1016/j.jphotobiol.2005.08.011

Wilson, 2004, Proc. SPIE, 5416, 157, 10.1117/12.543248

Guo, 2012, Nat. Nanotechnol., 7, 798, 10.1038/nnano.2012.187

Nishiwaki, 2013, Nat. Photonics, 7, 240, 10.1038/nphoton.2012.345

Chen, 2015, Mater. Today, 18, 493, 10.1016/j.mattod.2015.06.001

Xu, 2010, Nat. Commun., 1, 1

Yokogawa, 2012, Nano Lett., 12, 4349, 10.1021/nl302110z

Li, 2015, ACS Photonics, 2, 183, 10.1021/ph500410u

Cicek, 2013, Appl. Phys. Lett., 103, 191108, 10.1063/1.4829065

Fang, 2015, Nat. Photonics, 9, 679, 10.1038/nphoton.2015.156

Armin, 2015, Nat. Commun., 6, 6343, 10.1038/ncomms7343

Ni, 2013, J. Mater. Chem. C, 1, 4445, 10.1039/c3tc30525b

Zhong, 2017, J. Am. Chem. Soc., 139, 5644, 10.1021/jacs.6b13089

Solanki, 2018, ACS Photonics, 5, 520, 10.1021/acsphotonics.7b01034

Xiong, 2018, IEEE J. Sel. Top. Quantum Electron., 24, 1900406

Shi, 2017, Nano Lett., 17, 313, 10.1021/acs.nanolett.6b04116

Jeon, 2018, Nat. Energy, 3, 682, 10.1038/s41560-018-0200-6

Chen, 2014, J. Am. Chem. Soc., 136, 622, 10.1021/ja411509g

Ding, 2018, Adv. Opt. Mater., 6, 1800347, 10.1002/adom.201800347

Chiba, 2018, Nat. Photonics, 12, 681, 10.1038/s41566-018-0260-y

Sun, 2016, Adv. Mater., 28, 10088, 10.1002/adma.201603081

Zhang, 2018, Nanoscale, 10, 20131, 10.1039/C8NR07022A

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Zhang, 2019, J. Phys. Chem. Lett., 10, 836, 10.1021/acs.jpclett.9b00154

Shi, 2018, Adv. Funct. Mater., 28, 1707031, 10.1002/adfm.201707031

Yang, 2017, Adv. Mater., 29, 1703758, 10.1002/adma.201703758

Li, 2017, ACS Nano, 11, 2015, 10.1021/acsnano.6b08194

Zheng, 2017, Adv. Funct. Mater., 27, 1703115, 10.1002/adfm.201703115

Deng, 2017, Nano Lett., 17, 2482, 10.1021/acs.nanolett.7b00166

Li, 2018, ACS Photonics, 5, 2524, 10.1021/acsphotonics.8b00348

Lin, 2015, Nat. Photonics, 9, 687, 10.1038/nphoton.2015.175

Rao, 2017, Adv. Mater., 29, 1602639, 10.1002/adma.201602639

Li, 2017, Adv. Opt. Mater., 5, 1700672, 10.1002/adom.201700672

Li, 2019, Nat. Commun., 10, 806, 10.1038/s41467-019-08768-z

Wang, 2019, ACS Nano, 13, 5473, 10.1021/acsnano.9b00259

Xue, 2018, Nano Lett., 18, 7628, 10.1021/acs.nanolett.8b03209

Lu, 2017, J. Mater. Chem. A, 5, 25211, 10.1039/C7TA07828E

Bi, 2019, J. Phys. Chem. Lett., 10, 943, 10.1021/acs.jpclett.9b00290

Roccanova, 2019, ACS Appl. Electron. Mater., 1, 269, 10.1021/acsaelm.9b00015

Li, 2019, Chem. Commun., 55, 4554, 10.1039/C8CC09265F

Vasquez, 1993, Surf. Sci. Spectra, 2, 149, 10.1116/1.1247734

Jun, 2018, Adv. Mater., 30, 1804547, 10.1002/adma.201804547

Yuan, 2017, Nat. Commun., 8, 14051, 10.1038/ncomms14051

Zhou, 2017, Angew. Chem., 129, 9146, 10.1002/ange.201702825

Halcrow, 2013, Chem. Soc. Rev., 42, 1784, 10.1039/C2CS35253B

Kim, 2017, Chem. Commun., 3, 2858, 10.1039/C6CC10139A

Jones, 2009, J. Phys. Chem. C, 113, 18632, 10.1021/jp9078772

Wu, 2015, J. Am. Chem. Soc., 137, 2089, 10.1021/ja512833n

Shi, 2018, ACS Nano, 12, 1462, 10.1021/acsnano.7b07856

Wei, 2016, Chem. Commun., 52, 7265, 10.1039/C6CC01500J

Tsai, 2018, Adv. Mater., 30, 1704217, 10.1002/adma.201704217

Stoumpos, 2013, Cryst. Growth Des., 13, 2722, 10.1021/cg400645t

Cho, 2018, Adv. Mater., 30, 1704587, 10.1002/adma.201704587

Gong, 2009, Science, 325, 1665, 10.1126/science.1176706

Liu, 2018, Adv. Mater., 30, 1707314, 10.1002/adma.201707314

Li, 2019, Chin. Phys. B, 28, 017803, 10.1088/1674-1056/28/1/017803

Wu, 2019, Small, 15, 1900730, 10.1002/smll.201900730

Yang, 2017, Adv. Mater., 29, 1703758, 10.1002/adma.201703758

Guo, 2015, J. Phys. Chem. Lett., 6, 535, 10.1021/jz502717g

Hussain, 2019, Nanoscale, 11, 1217, 10.1039/C8NR08959K

Tong, 2017, RSC Adv., 7, 18224, 10.1039/C7RA01430A

Li, 2017, Sol. Energy Mater. Sol. Cells, 172, 341, 10.1016/j.solmat.2017.08.014

Fang, 2019, ACS Appl. Mater. Interfaces, 11, 8419, 10.1021/acsami.8b20538

Li, 2019, Adv. Mater. Interfaces, 6, 1900188, 10.1002/admi.201900188

Wu, 2018, Adv. Opt. Mater., 6, 1800811, 10.1002/adom.201800811

Zhou, 2018, J. Phys. Chem. Lett., 9, 2043, 10.1021/acs.jpclett.8b00700

Lu, 2017, Adv. Mater., 29, 1700400, 10.1002/adma.201700400

Song, 2018, ACS Appl. Mater. Interfaces, 10, 2801, 10.1021/acsami.7b14745

Leng, 2018, Adv. Funct. Mater., 28, 1704446, 10.1002/adfm.201704446

Aitola, 2017, Adv. Mater., 29, 1606398, 10.1002/adma.201606398

Li, 2017, J. Mater. Chem. C, 5, 8355, 10.1039/C7TC02137B

Yang, 2018, Adv. Opt. Mater., 6, 1800262, 10.1002/adom.201800262