Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arif MFH, Ahmed K, Asaduzzaman S, Azad MAK (2016) Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors 6(3):279–288
Asaduzzaman S, Ahmed K, Bhuiyan T, Farah T (2016) Hybrid photonic crystal fiber in chemical sensing. Springer, London
Beadie G, Brindza M, Flynn RA, Rosenberg A, Shirk JS (2015) Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4–1.6 μm. Appl Opt 54:F139–F143
Bondu MM, Brooks CD, Jakobsen C, Oakes K, Moselund PM, Leick L, Bang O, Podoleanu A (2016) High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy. J Biomed Optics. 21(6):061005. https://doi.org/10.1117/1.JBO.21.6.061005
Faruk MM, Khan NT, Biswas SK (2019) Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system. Front Optoelectron. https://doi.org/10.1007/s12200-019-0948-8
Habib MA (2020a) “A refractive index based micro-structured sensor for blood components detection in terahertz regime. Sensor Lett 18(1):74–82
Habib MA (2020b) A Refractive index based micro-structured sensor for blood components detection in terahertz regime. Sensor Letters 18(1):74–82
Habib A, Anower S, Hasan R (2017) Ultrahigh birefringence and extremely low loss slotted-core microstructure fiber in terahertz regime. Curr Opt Photon 1:567–572
Habib MA, Anower MS, Abdulrazak LF, Reza MS (2019) Hollow core photonic crystal fiber for chemical identification in terahertz regime. Opt Fiber Technol. https://doi.org/10.1016/j.yofte.2019.101933
Habib MA, Anower MS, Haque MI (2020) Highly sensitive hollow core spiral fiber for chemical spectroscopic applications. Sens Internat. https://doi.org/10.1016/j.sintl.2020.100011
Hansen TP et al (2001) Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol Lett 13(6):588–590. https://doi.org/10.1109/68.924030
https://www.hamamatsu.com/jp/en/product/type/L12509-0155L/index.html.
Humbert G, Knight JC, Bouwmans G, Russell PJ, Williams DP, Roberts PJ, Mangan BJ (2004) Hollow core photonic crystal fibers for beam delivery. Opt Express 12:1477–1484
Islam MS, Sultana J, Ahmed K, Islam MR, Dinovister A, Abbott D (2018) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensor J. 18:575–582
Islam MS, Paul BK, Ahmed K, Asaduzzaman S, Islam MI, Chowdhury S, Sen S, Bahar AN (2018) Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alex Eng J 57:1459–1466
Islam MR, Kabir MF, Talha KMA, Islam MS (2019) A novel hollow core terahertz refractometric sensor. Sens Biosens Res 5:100295
Kedenburg S, Vieweg M, Gissibl T, Giessen H (2012) Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mat Express 2:1588–1611
Knabe K, Shun Wu, Lim J, Tillman KA, Light PS, Couny F, Wheeler N, Thapa R, Jones AM, Nicholson JW, Washburn BR, Benabid F, Corwin KL (2009) 10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers. Opt Express 17:16017–16026
Konorov SO, Zheltikov AM, Scalora M (2005) Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Opt Express 13:3454–3459
Ling Fu, Gan X, Min Gu (2005) Nonlinear optical microscopy based on double-clad photonic crystal fibers. Opt Express 13:5528–5534
Liu C, Yang L, Xili Lu, Liu Q, Wang F, Lv J, Sun T, Haiwei Mu, Chu PK (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25:14227–14237
Liu C, Weiquan Su, Liu Q, Xili Lu, Wang F, Sun T, Chu PK (2018) Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt Express 26:9039–9049
Lobo Ribeiro AB, Silva SFO, Frazão O, Santos JL (2019) Bi-core optical fiber for sensing of temperature, strain and torsion. Measure Sci Technol 30:035104
Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55:1205–1208
McConnell G, Riis E (2004) ”Two-photon laser scanning fluorescence microscopy using photonic crystal fiber”. J Biomed Optics 9:5. https://doi.org/10.1117/1.1778734
Morton PA, Tanbun-Ek T, Logan RA, Ackerman DA, Shtengel GE, Yadvish RD, Michael Sergent A, Sciortino Jr PF (1996) Ultrawide bandwidth 155-um lasers. SPIE High-Speed Semicond Laser Sources 26:84
Moutzouris K, Papamichael M, Betsis SC, Stavrakas I, Hloupis G, Triantis D (2013) Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl Phys B 116:617–622
Reeves WH, Knight JC, Russell PJ, Roberts PJ (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10:609–613
Robin C, Dajani I, Zeringue C, Ward B, Lanari A (2012) Gain-tailored SBS suppressing photonic crystal fibers for high power applications. Proc SPIE Fiber Syst Appl 1:82371D. https://doi.org/10.1117/12.910324
SCHOTT Zemax catalog 2017-01-20b, SCHOTT glass data sheets. http://www.schott.com
Travers JC, Chang W, Nold J, Joly NY (2011) PJ Russell (2011) “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]”. J Opt Soc Am B 28:A11–A26
Vaiano P, Carotenuto B, Pisco M, Ricciardi A, Quero G, Consales M, Crescitelli A, Esposito E, Cusano A (2016) Lab on fiber technology for biological sensing applications. Laser Photonics Rev 10(6):922–961