Highly Reproducible Synthesis of Hollow Zirconia Particles via Atmospheric-Pressure Plasma Processing with Inkjet Droplets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wang X, Feng J, Bai Y et al (2016) Synthesis, Properties, and applications of Hollow Micro-/Nanostructures. Chem Rev 116:10983–11060. https://doi.org/10.1021/acs.chemrev.5b00731
Xia Y, Na X, Wu J, Ma G (2019) The Horizon of the Emulsion Particulate Strategy: Engineering Hollow particles for Biomedical Applications. Adv Mater 31:1801159. https://doi.org/10.1002/adma.201801159
Yasun E, Gandhi S, Choudhury S et al (2020) Hollow micro and nanostructures for therapeutic and imaging applications. J Drug Deliv Sci Technol 60:102094. https://doi.org/10.1016/j.jddst.2020.102094
Wichaita W, Polpanich D, Tangboriboonrat P (2019) Review on synthesis of Colloidal Hollow Particles and their applications. Ind Eng Chem Res 58:20880–20901. https://doi.org/10.1021/acs.iecr.9b02330
Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of Inorganic and Hybrid Hollow spheres by Colloidal Templating. Science 282:1111–1114. https://doi.org/10.1126/science.282.5391.1111
Noguchi S, Sato K, Yamamoto K, Kadokawa J (2019) Preparation of composite and hollow particles from self-assembled chitin nanofibers by Pickering emulsion polymerization. Int J Biol Macromol 126:187–192. https://doi.org/10.1016/j.ijbiomac.2018.12.209
Aghaali MH, Firoozi S (2019) Synthesis of nanostructured fcc/hcp hollow ni particles by ultrasonic spray pyrolysis and its dry reforming catalytic properties. Powder Technol 356:119–128. https://doi.org/10.1016/j.powtec.2019.08.023
Lenggoro IW, Hata T, Iskandar F et al (2000) An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J Mater Res 15:733–743. https://doi.org/10.1557/JMR.2000.0106
Widiyastuti W, Wang W-N, Lenggoro IW et al (2007) Simulation and experimental study of spray pyrolysis of polydispersed droplets. J Mater Res 22:1888–1898. https://doi.org/10.1557/jmr.2007.0235
Jayanthi GV, Zhang SC, Messing GL (1993) Modeling of solid particle formation during solution Aerosol Thermolysis: the Evaporation Stage. Aerosol Sci Technol 19:478–490. https://doi.org/10.1080/02786829308959653
Tsumaki M, Shimizu Y, Ito T (2016) Size-controlled sub-micrometer spheroidized ZnO particles synthesis via plasma-induced processing in microdroplets. Mater Lett 166:81–84. https://doi.org/10.1016/j.matlet.2015.12.043
Arita S, Aoyagi N, Ohshita K et al (2017) Synthesis and characterization of spherical alumina nanoparticles by spray pyrolysis using radiofrequency plasma. J Ceram Soc JAPAN 125:539–542. https://doi.org/10.2109/jcersj2.16320
Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Room-Temperature Preparation of ZrO2 Precursor Thin Film in an aqueous peroxozirconium-complex solution. Chem Mater 16:2615–2622. https://doi.org/10.1021/cm049771i
Izumi K, Murakami M, Deguchi T et al (1989) Zirconia Coating on Stainless Steel Sheets from Organozirconium compounds. J Am Ceramic Soc 72:1465–1468. https://doi.org/10.1111/j.1151-2916.1989.tb07677.x
Jo S, Raj R (2020) Transition to electronic conduction at the onset of flash in cubic zirconia. Scripta Mater 174:29–32. https://doi.org/10.1016/j.scriptamat.2019.07.043
Akasaka S, Amamoto Y, Yuji H, Kanno I (2021) Limiting current type yttria-stabilized zirconia thin-film oxygen sensor with spiral Ta2O5 gas diffusion layer. Sens Actuators B 327:128932. https://doi.org/10.1016/j.snb.2020.128932
Zhang S-C, Messing GL, Borden M (1990) Synthesis of solid, spherical Zirconia particles by Spray Pyrolysis. J Am Ceramic Soc 73:61–67. https://doi.org/10.1111/j.1151-2916.1990.tb05091.x
Manivasakan P, Karthik A, Rajendran V (2013) Mass production of Al2O3 and ZrO2 nanoparticles by hot-air spray pyrolysis. Powder Technol 234:84–90. https://doi.org/10.1016/j.powtec.2012.08.028
Nimmo W, Hind D, Ali NJ et al (2002) The production of ultrafine zirconium oxide powders by spray pyrolysis. J Mater Sci 37:3381–3387. https://doi.org/10.1023/A:1016549325319
Su Y-M, Kuo Y-L, Lin C-M, Lee S-F (2014) One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet. Powder Technol 267:74–79. https://doi.org/10.1016/j.powtec.2014.07.004
Verkouteren RM, Verkouteren JR (2011) Inkjet Metrology II: resolved effects of ejection frequency, fluidic pressure, and Droplet Number on Reproducible Drop-on-demand dispensing. Langmuir 27:9644–9653. https://doi.org/10.1021/la201728f
Dobre M, Bolle L (2002) Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries. Exp Thermal Fluid Sci 26:205–211. https://doi.org/10.1016/S0894-1777(02)00128-0
Avvaru B, Patil MN, Gogate PR, Pandit AB (2006) Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics 44:146–158. https://doi.org/10.1016/j.ultras.2005.09.003
Nitta K, Shimizu Y, Terashima K, Ito T (2021) Plasma-assisted synthesis of size-controlled monodisperse submicron gold particles using inkjet droplets. J Phys D: Appl Phys 54:33LT01. https://doi.org/10.1088/1361-6463/ac02f8
Yang J, Katagiri D, Mao S et al (2015) Generation of controlled monodisperse porous polymer particles by dipped inkjet injection. RSC Adv 5:7297–7303. https://doi.org/10.1039/C4RA13275K
Nitta K, Muneoka H, Shimizu Y et al (2023) Evaporation behavior of liquid microdroplets in atmospheric-pressure nonequilibrium plasma. Plasma Sources Sci Technol 32:055008. https://doi.org/10.1088/1361-6595/acd3ab
Nayak G, Simeni Simeni M, Rosato J et al (2020) Characterization of an RF-driven argon plasma at atmospheric pressure using broadband absorption and optical emission spectroscopy. J Appl Phys 128:243302. https://doi.org/10.1063/5.0035488
Maguire PD, Mahony CMO, Kelsey CP et al (2015) Controlled microdroplet transport in an atmospheric pressure microplasma. Appl Phys Lett 106:224101. https://doi.org/10.1063/1.4922034
Tsumaki M, Ito T (2017) Optical emission spectroscopy of atmospheric-pressure non-equilibrium plasma with mist injection. AIP Adv 7:125211. https://doi.org/10.1063/1.5011076
Bruggeman P, Iza F, Guns P et al (2010) Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A – X) emission. Plasma Sources Sci Technol 19:015016. https://doi.org/10.1088/0963-0252/19/1/015016
Bruggeman P, Schram DC, Kong MG, Leys C (2009) Is the rotational temperature of OH(A–X) for discharges in and in contact with liquids a Good Diagnostic for determining the gas temperature? Plasma Processes Polym 6:751–762. https://doi.org/10.1002/ppap.200950014
Darwiche S, Nikravech M, Awamat S et al (2007) Optical emission spectroscopic investigation of hydrogen plasma used for modification of electrical properties of multi-crystalline silicon. J Phys D: Appl Phys 40:1030–1036. https://doi.org/10.1088/0022-3727/40/4/017
Sarani A, Nikiforov AYu, Leys C (2010) Atmospheric pressure plasma jet in ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys Plasmas 17:063504. https://doi.org/10.1063/1.3439685
Cullen PJ, Milosavljevi V (2015) Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Progress of Theoretical and Experimental Physics 2015:63J01–63J00. https://doi.org/10.1093/ptep/ptv070
Sharma MK, Saikia BK, Phukan A, Ganguli B (2006) Plasma nitriding of austenitic stainless steel in N2 and N2–H2 Dc pulsed discharge. Surf Coat Technol 201:2407–2413. https://doi.org/10.1016/j.surfcoat.2006.04.006
Heywood H (1937) Numerical definitions of particle size and shape. Soc Chem Ind Symp Aggregates 56:149–154. https://doi.org/10.1002/jctb.5000560702
Cox EP (1927) A method of assigning numerical and percentage values to the degree of roundness of sand grains. J Paleontol 1:179–183
Blott SJ, Pye K (2008) Particle shape: a review and new methods of characterization and classification. Sedimentology 55:31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x
Zhao X, Vanderbilt D (2002) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105. https://doi.org/10.1103/PhysRevB.65.075105
Amiri A, Ingram GD, Maynard NE et al (2015) An Unreacted shrinking Core Model for Calcination and similar solid-to-gas reactions. Chem Eng Commun 202:1161–1175. https://doi.org/10.1080/00986445.2014.910771
Mezhericher M, Levy A, Borde I (2008) Modelling of particle breakage during drying. Chem Eng Process 47:1404–1411. https://doi.org/10.1016/j.cep.2007.06.018
Chen L, Mashimo T, Omurzak E et al (2011) Pure Tetragonal ZrO2 nanoparticles synthesized by Pulsed plasma in Liquid. J Phys Chem C 115:9370–9375. https://doi.org/10.1021/jp111367k
Maguire P, Rutherford D, Macias-Montero M et al (2017) Continuous In-Flight synthesis for On-Demand delivery of Ligand-Free Colloidal Gold Nanoparticles. Nano Lett 17:1336–1343. https://doi.org/10.1021/acs.nanolett.6b03440