Highly Reproducible Synthesis of Hollow Zirconia Particles via Atmospheric-Pressure Plasma Processing with Inkjet Droplets

Kaishu Nitta1,2, Tomoki Sakai1, Hitoshi Muneoka1, Yoshiki Shimizu3, Hiromichi Kobayashi4, Kazuo Terashima1,3, Tsuyohito Ito1
1Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
2Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
3AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa Research Complex II, Kashiwanoha, Kashiwa, Japan
4Research and Education Center for Natural Sciences, Department of Physics, Keio University, Yokohama, Japan

Tóm tắt

Hollow particles have attracted considerable attention owing to their unique properties. In this study, hollow monoclinic zirconia particles were directly synthesized from inkjet droplets of a zirconyl hydroxychloride aqueous solution via atmospheric-pressure plasma processing. Hollow structures with craggy surfaces were obtained in the plasma at gas temperatures above 1000 K. The steep solvent evaporation rate induced by the localized high-energy reaction field of the atmospheric-pressure plasma may have induced solute condensation near the droplet surface and contributed to the formation of hollow particles. The average diameter of the synthesized particles was ~ 3 μm, while their size distribution was narrow (coefficient of variation: 0.06–0.10). The high reproducibility of the synthesized particles was attributed to the small variations in inkjet droplet size. The proposed method enables the rapid synthesis of hollow particles of various inorganic materials, while controlling their number and composition.

Từ khóa


Tài liệu tham khảo

Wang X, Feng J, Bai Y et al (2016) Synthesis, Properties, and applications of Hollow Micro-/Nanostructures. Chem Rev 116:10983–11060. https://doi.org/10.1021/acs.chemrev.5b00731

Xia Y, Na X, Wu J, Ma G (2019) The Horizon of the Emulsion Particulate Strategy: Engineering Hollow particles for Biomedical Applications. Adv Mater 31:1801159. https://doi.org/10.1002/adma.201801159

Yasun E, Gandhi S, Choudhury S et al (2020) Hollow micro and nanostructures for therapeutic and imaging applications. J Drug Deliv Sci Technol 60:102094. https://doi.org/10.1016/j.jddst.2020.102094

Wichaita W, Polpanich D, Tangboriboonrat P (2019) Review on synthesis of Colloidal Hollow Particles and their applications. Ind Eng Chem Res 58:20880–20901. https://doi.org/10.1021/acs.iecr.9b02330

Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of Inorganic and Hybrid Hollow spheres by Colloidal Templating. Science 282:1111–1114. https://doi.org/10.1126/science.282.5391.1111

Noguchi S, Sato K, Yamamoto K, Kadokawa J (2019) Preparation of composite and hollow particles from self-assembled chitin nanofibers by Pickering emulsion polymerization. Int J Biol Macromol 126:187–192. https://doi.org/10.1016/j.ijbiomac.2018.12.209

Aghaali MH, Firoozi S (2019) Synthesis of nanostructured fcc/hcp hollow ni particles by ultrasonic spray pyrolysis and its dry reforming catalytic properties. Powder Technol 356:119–128. https://doi.org/10.1016/j.powtec.2019.08.023

Lenggoro IW, Hata T, Iskandar F et al (2000) An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J Mater Res 15:733–743. https://doi.org/10.1557/JMR.2000.0106

Widiyastuti W, Wang W-N, Lenggoro IW et al (2007) Simulation and experimental study of spray pyrolysis of polydispersed droplets. J Mater Res 22:1888–1898. https://doi.org/10.1557/jmr.2007.0235

Jayanthi GV, Zhang SC, Messing GL (1993) Modeling of solid particle formation during solution Aerosol Thermolysis: the Evaporation Stage. Aerosol Sci Technol 19:478–490. https://doi.org/10.1080/02786829308959653

Tsumaki M, Shimizu Y, Ito T (2016) Size-controlled sub-micrometer spheroidized ZnO particles synthesis via plasma-induced processing in microdroplets. Mater Lett 166:81–84. https://doi.org/10.1016/j.matlet.2015.12.043

Arita S, Aoyagi N, Ohshita K et al (2017) Synthesis and characterization of spherical alumina nanoparticles by spray pyrolysis using radiofrequency plasma. J Ceram Soc JAPAN 125:539–542. https://doi.org/10.2109/jcersj2.16320

Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Room-Temperature Preparation of ZrO2 Precursor Thin Film in an aqueous peroxozirconium-complex solution. Chem Mater 16:2615–2622. https://doi.org/10.1021/cm049771i

Izumi K, Murakami M, Deguchi T et al (1989) Zirconia Coating on Stainless Steel Sheets from Organozirconium compounds. J Am Ceramic Soc 72:1465–1468. https://doi.org/10.1111/j.1151-2916.1989.tb07677.x

Jo S, Raj R (2020) Transition to electronic conduction at the onset of flash in cubic zirconia. Scripta Mater 174:29–32. https://doi.org/10.1016/j.scriptamat.2019.07.043

Akasaka S, Amamoto Y, Yuji H, Kanno I (2021) Limiting current type yttria-stabilized zirconia thin-film oxygen sensor with spiral Ta2O5 gas diffusion layer. Sens Actuators B 327:128932. https://doi.org/10.1016/j.snb.2020.128932

Zhang S-C, Messing GL, Borden M (1990) Synthesis of solid, spherical Zirconia particles by Spray Pyrolysis. J Am Ceramic Soc 73:61–67. https://doi.org/10.1111/j.1151-2916.1990.tb05091.x

Manivasakan P, Karthik A, Rajendran V (2013) Mass production of Al2O3 and ZrO2 nanoparticles by hot-air spray pyrolysis. Powder Technol 234:84–90. https://doi.org/10.1016/j.powtec.2012.08.028

Nimmo W, Hind D, Ali NJ et al (2002) The production of ultrafine zirconium oxide powders by spray pyrolysis. J Mater Sci 37:3381–3387. https://doi.org/10.1023/A:1016549325319

Su Y-M, Kuo Y-L, Lin C-M, Lee S-F (2014) One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet. Powder Technol 267:74–79. https://doi.org/10.1016/j.powtec.2014.07.004

Verkouteren RM, Verkouteren JR (2011) Inkjet Metrology II: resolved effects of ejection frequency, fluidic pressure, and Droplet Number on Reproducible Drop-on-demand dispensing. Langmuir 27:9644–9653. https://doi.org/10.1021/la201728f

Dobre M, Bolle L (2002) Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries. Exp Thermal Fluid Sci 26:205–211. https://doi.org/10.1016/S0894-1777(02)00128-0

Avvaru B, Patil MN, Gogate PR, Pandit AB (2006) Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics 44:146–158. https://doi.org/10.1016/j.ultras.2005.09.003

Nitta K, Shimizu Y, Terashima K, Ito T (2021) Plasma-assisted synthesis of size-controlled monodisperse submicron gold particles using inkjet droplets. J Phys D: Appl Phys 54:33LT01. https://doi.org/10.1088/1361-6463/ac02f8

Yang J, Katagiri D, Mao S et al (2015) Generation of controlled monodisperse porous polymer particles by dipped inkjet injection. RSC Adv 5:7297–7303. https://doi.org/10.1039/C4RA13275K

Nitta K, Muneoka H, Shimizu Y et al (2023) Evaporation behavior of liquid microdroplets in atmospheric-pressure nonequilibrium plasma. Plasma Sources Sci Technol 32:055008. https://doi.org/10.1088/1361-6595/acd3ab

Nayak G, Simeni Simeni M, Rosato J et al (2020) Characterization of an RF-driven argon plasma at atmospheric pressure using broadband absorption and optical emission spectroscopy. J Appl Phys 128:243302. https://doi.org/10.1063/5.0035488

Maguire PD, Mahony CMO, Kelsey CP et al (2015) Controlled microdroplet transport in an atmospheric pressure microplasma. Appl Phys Lett 106:224101. https://doi.org/10.1063/1.4922034

Tsumaki M, Ito T (2017) Optical emission spectroscopy of atmospheric-pressure non-equilibrium plasma with mist injection. AIP Adv 7:125211. https://doi.org/10.1063/1.5011076

Bruggeman P, Iza F, Guns P et al (2010) Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A – X) emission. Plasma Sources Sci Technol 19:015016. https://doi.org/10.1088/0963-0252/19/1/015016

Bruggeman P, Schram DC, Kong MG, Leys C (2009) Is the rotational temperature of OH(A–X) for discharges in and in contact with liquids a Good Diagnostic for determining the gas temperature? Plasma Processes Polym 6:751–762. https://doi.org/10.1002/ppap.200950014

Darwiche S, Nikravech M, Awamat S et al (2007) Optical emission spectroscopic investigation of hydrogen plasma used for modification of electrical properties of multi-crystalline silicon. J Phys D: Appl Phys 40:1030–1036. https://doi.org/10.1088/0022-3727/40/4/017

Sarani A, Nikiforov AYu, Leys C (2010) Atmospheric pressure plasma jet in ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys Plasmas 17:063504. https://doi.org/10.1063/1.3439685

Cullen PJ, Milosavljevi V (2015) Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air. Progress of Theoretical and Experimental Physics 2015:63J01–63J00. https://doi.org/10.1093/ptep/ptv070

Sharma MK, Saikia BK, Phukan A, Ganguli B (2006) Plasma nitriding of austenitic stainless steel in N2 and N2–H2 Dc pulsed discharge. Surf Coat Technol 201:2407–2413. https://doi.org/10.1016/j.surfcoat.2006.04.006

Heywood H (1937) Numerical definitions of particle size and shape. Soc Chem Ind Symp Aggregates 56:149–154. https://doi.org/10.1002/jctb.5000560702

Cox EP (1927) A method of assigning numerical and percentage values to the degree of roundness of sand grains. J Paleontol 1:179–183

Blott SJ, Pye K (2008) Particle shape: a review and new methods of characterization and classification. Sedimentology 55:31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x

Zhao X, Vanderbilt D (2002) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105. https://doi.org/10.1103/PhysRevB.65.075105

Amiri A, Ingram GD, Maynard NE et al (2015) An Unreacted shrinking Core Model for Calcination and similar solid-to-gas reactions. Chem Eng Commun 202:1161–1175. https://doi.org/10.1080/00986445.2014.910771

Mezhericher M, Levy A, Borde I (2008) Modelling of particle breakage during drying. Chem Eng Process 47:1404–1411. https://doi.org/10.1016/j.cep.2007.06.018

Chen L, Mashimo T, Omurzak E et al (2011) Pure Tetragonal ZrO2 nanoparticles synthesized by Pulsed plasma in Liquid. J Phys Chem C 115:9370–9375. https://doi.org/10.1021/jp111367k

Maguire P, Rutherford D, Macias-Montero M et al (2017) Continuous In-Flight synthesis for On-Demand delivery of Ligand-Free Colloidal Gold Nanoparticles. Nano Lett 17:1336–1343. https://doi.org/10.1021/acs.nanolett.6b03440